已知f(x)=ax2+bx+c (a>0),α,β為方程f(x)=x的兩根,且0<α<β,當(dāng)0<x<α?xí)r,給出下列不等式,成立的是                               (       )

A.x<f(x)           B.x≤f(x)     

C.x>f(x)           D.x≥f(x)

 

【答案】

A

【解析】解:α,β為方程f(x)=x的兩根,即α,β為方程F(x)==0的兩根, ∵a>0且0<α<β,當(dāng)0<x<α?xí)rF(x)>0,即

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax2+x
2x2+b
為奇函數(shù)(a,b是常數(shù)),且函數(shù)f(x)的圖象過(guò)點(diǎn)(1,
1
3
)

(1)求f(x)的表達(dá)式;
(2)定義正數(shù)數(shù)列{an},a1=
1
2
,
a
2
n+1
=2anf(an)(n∈N*)
,求數(shù)列{an2}的通項(xiàng)公式;
(3)已知b&n=
a
2
n
a
2
n+1
2n-2
,設(shè)Sn為bn的前n項(xiàng)和,證明:
1
6
Sn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax2+x
2x2+b
(a,b為常數(shù))為奇函數(shù),且過(guò)點(diǎn)(1,
1
3
)

(1)求f(x)的表達(dá)式;
(2)定義正數(shù)數(shù)列{an},a1=
1
2
,
a
2
n+1
=2anf(an)(n∈N*)
,證明:數(shù)列{
1
a
2
n
-2}
是等比數(shù)列;
(3)令bn=
1
a
2
n
-2,Sn為{bn}
的前n項(xiàng)和,求使Sn
31
8
成立的最小n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax2+2
b-3x
是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),f(2)=-
5
3

(1)求a,b的值;
(2)請(qǐng)用函數(shù)單調(diào)性的定義說(shuō)明:f(x)在區(qū)間(1,+∞)上的單調(diào)性;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
ax2+bx+1
x+c
(a>0)
是奇函數(shù),且當(dāng)x>0時(shí),f(x)有最小值2
2
,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),且f(c)=0,當(dāng)0<x<c時(shí),f(x)>0.

(1)求證:>c;

(2)求證:-2<b<-1;

(3)當(dāng)c>1,t>0時(shí),求證:++>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案