【題目】為了了解某校九年級400名學生的體質(zhì)情況,隨機抽查了20名學生,測試1 min仰臥起坐的成績(次數(shù)),測試成績?nèi)缦拢?/span>

30 35 32 33 28 36 34 28 25 40

28 32 30 42 37 36 33 31 26 24

120名學生的平均成績是多少?標準差是多少?

2)次數(shù)位于之間有多位同學?所占的百分比是多少?

【答案】1,;(214位;70%.

【解析】

1)平均數(shù)的計算方法是求出這20名學生的總分之和,然后除以學生數(shù)20,再代入方差公式即可計算標準差;

2)根據(jù)(1)計算,位于此次數(shù)區(qū)間人數(shù)÷總?cè)藬?shù)×100%,列式計算即可求得百分比.

120名學生的平均成績?yōu)椋?/span>

.

方差:

,

即標準差.

2,

,

所以次數(shù)位于之間的有14位同學,

所占的百分比是70%.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓心為點,點是圓內(nèi)一個定點,是圓上任意一點,線段的垂直平分線和半徑相交于點在圓上運動.

l)求動點的軌跡的方程;

2)若為曲線上任意一點,|的最大值;

3)經(jīng)過點且斜率為的直線交曲線兩點在軸上是否存在定點,使得恒成立?若存在,求出點坐標:若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù):若存在閉區(qū)間和常數(shù)e,使得對任意,都有,且對任意,當時,恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

1)判斷函數(shù)是否為R上的平底型函數(shù)?并說明理由;

2)若函數(shù)是區(qū)間上的平底型函數(shù),求mn的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙二人參加某體育項目訓練,近期的五次測試成績得分情況如圖所示.

(1)分別求出兩人得分的平均數(shù)與方差;

(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓練成績作出評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:

1證明直線l經(jīng)過定點并求此點的坐標;

2若直線l不經(jīng)過第四象限,求k的取值范圍;

3若直線lx軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,.

(Ⅰ)求證:平面

(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,),其中數(shù)列、都是遞增數(shù)列.

1)若,判斷直線是否平行;

2)若數(shù)列都是正項等差數(shù)列,它們的公差分別為、,設四邊形的面積為),求證:也是等差數(shù)列;

3)若),,記直線的斜率為,數(shù)列8項依次遞減,求滿足條件的數(shù)列的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知px2-7x+100,qx2-4mx+3m20,其中m0

1)若m=3,pq都是真命題,求x的取值范圍;

2)若pq的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案