【題目】如圖1, 在直角梯形中, , , , 為線段的中點. 將沿折起,使平面 平面,得到幾何體,如圖2所示.
(1)求證: 平面;
(2)求二面角的余弦值.
【答案】(1)根據(jù)線面垂直的性質(zhì)定理來證明線線垂直。
(2)
【解析】試題分析:解析:(1)在圖1中, 可得, 從而,
故.
取中點連結(jié), 則, 又面 面,
面 面 , 面, 從而平面.
∴,又, .
∴平面.
(2)建立空間直角坐標(biāo)系如圖所示,
則, , , ,
.
設(shè)為面的法向量,則即, 解得. 令, 可得.
又為面的一個法向量,∴.
∴二面角的余弦值為.
(法二)如圖,取的中點, 的中點,連結(jié).
易知,又, ,又, .
又為的中位線,因, , ,且都在面內(nèi),故,故即為二面角的平面角.
在中,易知;
在中,易知, .
在中.
故.
∴二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)=(1+cos x,1+sin x),=(1,0),=(1,2).
(1)求證:(﹣)⊥(﹣);
(2)求||的最大值,并求此時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|1﹣|
(1)求滿足f(x)=2的x值;
(2)是否存在實數(shù)a,b,且0<a<b<1,使得函數(shù)y=f(x)在區(qū)間[a,b]上的值域為[a,2b],若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線PQ與⊙O切于點A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點C,連接CB,并延長與直線PQ相交于Q點.
(1)求證:QC·AC=QC2-QA2;
(2)若AQ=6,AC=5,求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= , g(x)是二次函數(shù),若f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(﹣∞,﹣1]∪[1,+∞)
B.(﹣∞,﹣1]∪[0,+∞)
C.[0,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(為參數(shù)),曲線(為參數(shù)).
(1)設(shè)與相交于兩點,求;
(2)若把曲線上各點的橫坐標(biāo)壓縮為原來的倍,縱坐標(biāo)壓縮為原來的倍,得到曲線,設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=kx2+2x(k為實常數(shù))為奇函數(shù),函數(shù)g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)當(dāng)a=時,g(x)≤t2﹣2mt+1對所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:橢圓與雙曲線有相同的焦點、,它們在軸右側(cè)有兩個交點、,滿足.將直線左側(cè)的橢圓部分(含, 兩點)記為曲線,直線右側(cè)的雙曲線部分(不含, 兩點)記為曲線.以為端點作一條射線,分別交于點,交于點(點在第一象限),設(shè)此時.
(1)求的方程;
(2)證明: ,并探索直線與斜率之間的關(guān)系;
(3)設(shè)直線交于點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2017年“雙”,“雙”購物狂歡節(jié)的來臨,某青花瓷生產(chǎn)廠家計劃每天生產(chǎn)湯碗、花瓶、茶杯這三種瓷器共個,生產(chǎn)一個湯碗需分鐘,生產(chǎn)一個花瓶需分鐘,生產(chǎn)一個茶杯需分鐘,已知總生產(chǎn)時間不超過小時.若生產(chǎn)一個湯碗可獲利潤元,生產(chǎn)一個花瓶可獲利潤元,生產(chǎn)一個茶杯可獲利潤元.
(1)使用每天生產(chǎn)的湯碗個數(shù)與花瓶個數(shù)表示每天的利潤(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com