(2012•北京模擬)如果兩條直線l1:ax+2y+6=0與l2:x+(a-1)y+3=0平行,那么a等于( 。
分析:兩直線平行,可得它們x的系數(shù)之比等于y的系數(shù)之比,且不等于常數(shù)項的比,由此建立方程并解之,即得實數(shù)a的值.
解答:解:∵直線l1:ax+2y+6=0與l2:x+(a-1)y+3=0平行,
a
1
=
2
a-1
6
3
,解之得a=-1(舍去2)
故選:B
點評:本題給出兩條直線平行,求參數(shù)a的值,著重考查了坐標(biāo)系內(nèi)兩條直線位置關(guān)系的判斷的知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知a、b、c、d是公比為2的等比數(shù)列,則
2a+b
2c+d
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)函數(shù)y=
log
2
3
(3x-2)
的定義域為
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)如圖,在四棱錐P-ABCD中,PA⊥平面AC,且四邊形ABCD是矩形,則該四棱錐的四個側(cè)面中是直角三角形的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)在數(shù)列{an}中,a1=
3
,an+1=
1+
a
2
n
-1
an
(n∈N*)
.?dāng)?shù)列{bn}滿足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求數(shù)列{bn}的通項公式;
(3)設(shè)數(shù)列{bn}的前n項和為Sn.若對于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)甲、乙、丙、丁四個人進(jìn)行傳球練習(xí),每次球從一個人的手中傳入其余三個人中的任意一個人的手中.如果由甲開始作第1次傳球,經(jīng)過n次傳球后,球仍在甲手中的所有不同的傳球種數(shù)共有an種.
(如,第一次傳球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)寫出 an+1與 an的關(guān)系式(不必證明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步練習(xí)冊答案