分析 (1)分別取AB、CD的中點(diǎn)M、N,連結(jié)EM,EN,MN,多面體體積轉(zhuǎn)化為棱柱AED-MFN的體積V1和四棱錐F-MBCN的體積V2之和,由此能求出多面體ABCDEF的體積.
(2)取MN中點(diǎn)O,BC中點(diǎn)P,以O(shè)M為x軸,OP為y軸,OF為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-C的余弦值.
解答 解:(1)分別取AB、CD的中點(diǎn)M、N,
連結(jié)EM,EN,MN,
多面體體積轉(zhuǎn)化為棱柱AED-MFN的體積V1和四棱錐F-MBCN的體積V2之和,
由三視圖知AD=2,AM=DN=1,
又面ADE為正三角形,且垂直于底面ABCD,
∴F到底面距離為√3,
∴多面體ABCDEF的體積:
V=V1+V2=√3+√33=4√33.
(2)取MN中點(diǎn)O,BC中點(diǎn)P,
以O(shè)M為x軸,OP為y軸,OF為z軸,建立空間直角坐標(biāo)系,
知A(1,-1,0),B(1,1,0),F(xiàn)(0,0,√3),
C(-1,1,0),
則→AB=(0,2,0),→AF=(-1,1,√3),
設(shè)平面ABF的法向量→n=(x,y,z),
則{→n•→AB=2y=0→n•→AF=−x+y+√3z=0,取x=√3,得→n=(√3,0,1),
同理求得平面BFC的法向量→m=(0,√3,1),
設(shè)二面角A-BF-C的平面角為θ,
則cosθ=-|→m•→n||→m|•|→n|=-14.
∴二面角A-BF-C的余弦值為14.
點(diǎn)評 本題考查多面體的體積的求法,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5√32,32)或 (−5√32,32) | B. | (52,3√32)或(52,−3√32) | ||
C. | (5,0)或(-5,0) | D. | (0,3)或(0,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=2y | B. | x2=4y | C. | x2=8y | D. | x2=16y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com