5.定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0<f(x)<1,當(dāng)x∈(0,π)且x≠$\frac{π}{2}$時(shí),(x-$\frac{π}{2}$)f′(x)>0,則函數(shù)y=f(x)-sinx在[-3π,π]上的零點(diǎn)個(gè)數(shù)為( 。
A.2B.4C.6D.8

分析 由題意x∈(0,π) 當(dāng)x∈(0,π) 且x≠$\frac{π}{2}$時(shí),(x-$\frac{π}{2}$)f′(x)>0,以$\frac{π}{2}$為分界點(diǎn)進(jìn)行討論,確定函數(shù)的單調(diào)性,利用函數(shù)的圖形,畫出草圖進(jìn)行求解,即可得到結(jié)論

解答 解:∵當(dāng)x∈[0,π]時(shí),0<f(x)<1,f(x)為偶函數(shù),
∴當(dāng)x∈[-π,2π]時(shí),0<f(x)<1;
當(dāng)x∈(0,π) 且x≠$\frac{π}{2}$時(shí),(x-$\frac{π}{2}$)f′(x)>0,
∴x∈[0,$\frac{π}{2}$]時(shí),f(x)為單調(diào)減函數(shù);x∈[$\frac{π}{2}$,π]時(shí),f(x)為單調(diào)增函數(shù),
∵x∈[0,π]時(shí),0<f(x)<1,
在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),在同一坐標(biāo)系中作出y=sinx和y=f(x)草圖象如下,

由圖知y=f(x)-sinx在[-3π,π]上的零點(diǎn)個(gè)數(shù)為4個(gè).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查函數(shù)的零點(diǎn),考查函數(shù)的周期性與奇偶性,利用數(shù)形結(jié)合的思想來(lái)求解,會(huì)化難為易.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某興趣小組測(cè)量渡江戰(zhàn)役紀(jì)念館前的勝利之塔的高度H(單位:m)如示意圖,垂直放置的標(biāo)桿BC高度h=2m,仰角∠ABE=α,∠ADE=β.
(Ⅰ)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.21,tanβ=1.17,請(qǐng)據(jù)此算出H的值;
(Ⅱ)該小組分析若干測(cè)得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到勝利之塔的距離d(單位:m),使α與β之差較大,可以提高測(cè)量精確度.若勝利之塔的實(shí)際高度為60m,試問d為多少時(shí),α-β最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知x,y的取值如表:
x0134
y2.24.34.86.7
根據(jù)如表可得回歸方程為$\stackrel{∧}{y}$=0.95x+a,則a=(  )
A.3.25B.2.6C.2.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知P是以F1(-1,0),以4為半徑的圓上的動(dòng)點(diǎn),P與F2(1,0)所連線段的垂直平分線與線段PF1交于點(diǎn)M.
(1)求點(diǎn)M的軌跡C的方程;
(2)已知點(diǎn)E坐標(biāo)為(4,0),直線l經(jīng)過點(diǎn)F2(1,0)并且與曲線C相交于A,B兩點(diǎn),求△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,AD是△ABC邊BC上的高,DE⊥AB,DF⊥AC
(Ⅰ)證明:B,C,F(xiàn),E四點(diǎn)共圓;
(Ⅱ)若AF=5,CF=2,DE=2$\sqrt{5}$,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知一動(dòng)圓經(jīng)過點(diǎn)M(2,0),且在y軸上截得的弦長(zhǎng)為4,設(shè)動(dòng)圓圓心的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(diǎn)N(1,0)任意作相互垂直的兩條直線l1,l2,分別交曲線C于不同的兩點(diǎn)A,B和不同的兩點(diǎn)D,E.設(shè)線段AB,DE的中點(diǎn)分別為P,Q.
①求證:直線PQ過定點(diǎn)R,并求出定點(diǎn)R的坐標(biāo);
②求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.盒子中有4只螺絲釘,其中有2只是壞的,現(xiàn)從盒中隨機(jī)地抽取2個(gè),那么$\frac{1}{6}$等于(  )
A.恰有1只是壞的概率B.2只都是壞的概率
C.恰有1只是好的概率D.至多1只是壞的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.一個(gè)商店銷售某種型號(hào)的電視機(jī),其中本地的產(chǎn)品有4種,外地的產(chǎn)品有7種,要買1臺(tái)這種型號(hào)的電視機(jī),有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a1+3a2,a4=8,則a1=( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案