(本題滿分14分)某突發(fā)事件,在不采取任何預防措施的情況下發(fā)生的概率為,一旦發(fā)生,將造成某公司300萬元的損失.現(xiàn)有甲、乙兩種相互獨立的預防措施可供選擇,單獨采用甲、乙預防措施所需的費用分別為40萬元和20萬元,采用相應預防措施后此突發(fā)事件不發(fā)生的概率分別為.若預防方案允許甲、乙兩種預防措施單獨采用、同時采用或都不采用,請分別計算這幾種預防方案的總費用,并指出哪一種預防方案總費用最少.
(注:總費用 = 采取預防措施的費用+發(fā)生突發(fā)事件損失的期望值)
(1)不采取預防措施時,總費用即損失期望值為 (萬元) .           …………2分
(2)若單獨采取預防措施甲,則預防措施費用為萬元,發(fā)生突發(fā)事件的概率為,損失期望值為 (萬元),                                             …………4分
所以總費用為 (萬元) .                                           …………5分
(3)若單獨采用預防措施乙,則預防措施費用為萬元,發(fā)生突發(fā)事件的概率為,損失期望值為 (萬元),                                            …………7分
所以總費用為 (萬元) .                                           …………8分
(4)若同時采用甲、乙兩種預防措施,則預防措施費用為萬元,發(fā)生突發(fā)事件的概率為,                                                  …………10分
損失期望值為(萬元),                                          …………11分
所以總費用為 (萬元).                                            …………12分
綜合(1)(2)(3)(4),比較其總費用可知,同時采用甲、乙兩種預防措施,總費用最少. 
…………14分
略       
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結(jié)果);
(2)隨機抽取8位同學,數(shù)學分數(shù)依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定90分(含90分)以上為優(yōu)秀,記為這8位同學中數(shù)學和物理分數(shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學期望;
②若這8位同學的數(shù)學、物理分數(shù)事實上對應下表:
學生編號
1
2
3
4
5
6
7
8
數(shù)學分數(shù)
60
65
70
75
80
85
90
95
物理分數(shù)
72
77
80
84
88
90
93
95
 
根據(jù)上表數(shù)據(jù)可知,變量之間具有較強的線性相關關系,求出的線性回歸方程(系數(shù)精確到0.01).(參考公式:,其中;參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某象棋教練用下列方式考核隊員:任一名隊員可以選擇與一級棋士或二級棋士對奕,規(guī)定與一級棋士對奕取勝得3分,不勝得0分,與二級棋士對弈取勝得2分,不勝得0分,如果前兩局得分超過3分即算考核合格,否則比賽三局.某位隊員與一級棋士對弈獲勝的概率為q1,與二級棋士對弈獲勝的概率為0.6,該隊員選擇先與一級棋士對奕,以后都與二級棋士對奕,用X表示該隊員考核結(jié)束后所得的總分,已知P(X=0)=0.128.
(1)求q1的值;
(2)寫出隨機變量X的分布列并求出數(shù)學期望EX;
(3)試比較該隊員選擇都與二級棋士對奕與上述方式最后得分大于3的概率的大小;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩人同時參加奧運志愿者的選拔賽,已知在備選的10道題中,甲能答對其中的6題,乙能答對其中的8題,規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才能入選.
(1)求甲答對試題數(shù)的分布列及數(shù)學期望;
(2)求甲、乙兩人至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某旅游公司為3個旅游團提供甲、乙、丙、丁4條旅游線路,每個旅游團從中任選一條。
(I)求3個旅游團選擇3條不同的旅游線路的概率;
(II)求恰有2條旅游線路沒有被選擇的概率;
(III)求選擇甲旅游線路的旅游團數(shù)的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙兩人進行一場乒乓球比賽,根據(jù)以往比賽的勝負情況知道,每一局比賽甲勝的概率0.6,乙勝的概率為0.4,本場比賽采用三局兩勝制。
(1)求甲獲勝的概率.
(2)設ξ為本場比賽的局數(shù),求ξ的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

,試比較  的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋擲兩枚骰子,當至少有一枚5點或一枚6點出現(xiàn)時,就說這次實驗成功,則在30次實驗中成功次數(shù)的期望是
A.B.C.D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某公司為慶祝元旦舉辦了一次抽獎活動,現(xiàn)場準備的抽獎箱里放置了分別標有數(shù)字1000、800、600、0的四個球(球的大小相同).參與者隨機從抽獎箱里摸取一球(取后即放回),公司即贈送與此球上所標數(shù)字等額的獎金(元),并規(guī)定摸到標有數(shù)字0的球時可以再摸一次,但是所得獎金減半(若再摸到標有數(shù)字0的球就沒有第三次摸球機會),求一個參與抽獎活動的人可得獎金的期望值是多少元.

查看答案和解析>>

同步練習冊答案