如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.

答案:
解析:

  證明:∵SB=SA=SC,∠ASB=∠ASC=60°∴AB=SA=AC

  取BC的中點O,連AO、SO,則AO⊥BC,SO⊥BC,

  ∴∠AOS為二面角的平面角,

  設(shè)SA=SB=SC=a,又∠BSC=90°,

  ∴BC=a,SO=a,

  AO2=AC2-OC2=a2a2a2,

  ∴SA2=AO2+OS2,

  ∴∠AOS=90°,從而平面ABC⊥平面BSC.

  評述:要證兩平面垂直,證其二面角的平面角為直角,這也是證兩平面垂直的常用方法.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°.求證:平面ABC⊥平面BSC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°.求證:平面ABC⊥平面BSC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)備考復(fù)習(xí)卷8:立體幾何(解析版) 題型:解答題

如圖,過S引三條長度相等但不共面的線段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求證:平面ABC⊥平面BSC.

查看答案和解析>>

同步練習(xí)冊答案