【題目】已知e為自然對數(shù)的底數(shù),設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k(k=1,2),則(
A.當(dāng)k=1時(shí),f(x)在x=1處取得極小值
B.當(dāng)k=1時(shí),f(x)在x=1處取得極大值
C.當(dāng)k=2時(shí),f(x)在x=1處取得極小值
D.當(dāng)k=2時(shí),f(x)在x=1處取得極大值

【答案】C
【解析】解:當(dāng)k=1時(shí),函數(shù)f(x)=(ex﹣1)(x﹣1).
求導(dǎo)函數(shù)可得f'(x)=ex(x﹣1)+(ex﹣1)=(xex﹣1),
f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,
則f(x)在在x=1處與在x=2處均取不到極值,
當(dāng)k=2時(shí),函數(shù)f(x)=(ex﹣1)(x﹣1)2
求導(dǎo)函數(shù)可得f'(x)=ex(x﹣1)2+2(ex﹣1)(x﹣1)=(x﹣1)(xex+ex﹣2),
∴當(dāng)x=1,f'(x)=0,且當(dāng)x>1時(shí),f'(x)>0,當(dāng)x0<x<1時(shí)(x0為極大值點(diǎn)),f'(x)<0,故函數(shù)f(x)在(1,+∞)上是增函數(shù);
在(x0 , 1)上是減函數(shù),從而函數(shù)f(x)在x=1取得極小值.對照選項(xiàng).
故選C.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的極值的相關(guān)知識(shí)可以得到問題的答案,需要掌握極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x、y滿足約束條件 ,若z=y﹣ax取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)a的值為( )
A.或﹣1
B.2或
C.2或1
D.2或﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓.點(diǎn)分別是圓上的動(dòng)點(diǎn),為直線上的動(dòng)點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與物理成績之間的關(guān)系,隨機(jī)抽取高二年級名學(xué)生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

數(shù)學(xué)成績

95

75

80

94

92

65

67

84

98

71

物理成績

90

63

72

87

91

71

58

82

93

81

序號

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績

67

93

64

78

77

90

57

83

72

83

物理成績

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績分以上為優(yōu)秀,物理成績分(含分)以上為優(yōu)秀.

(Ⅰ)根據(jù)上表完成下面的列聯(lián)表

數(shù)學(xué)成績優(yōu)秀

數(shù)學(xué)成績不優(yōu)秀

合計(jì)

物理成績優(yōu)秀

物理成績不優(yōu)秀

12

合計(jì)

20

(Ⅱ)根據(jù)題(Ⅰ)中表格的數(shù)據(jù)計(jì)算,有多少的把握認(rèn)為學(xué)生的數(shù)學(xué)成績與物理成績之間有關(guān)系?

(Ⅲ)若按下面的方法從這人中抽取人來了解有關(guān)情況將一個(gè)標(biāo)有數(shù)字,,,的正六面體骰子連續(xù)投擲兩次,記朝上的兩個(gè)數(shù)字的乘積為被抽取人的序號,試求抽到號的概率.

參考數(shù)據(jù)公式:①獨(dú)立性檢驗(yàn)臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

②獨(dú)立性檢驗(yàn)隨機(jī)變量值的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖兩座建筑物的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是915,從建筑物的頂部看建筑物的視角

1的長度;

2在線段上取一點(diǎn)點(diǎn)與點(diǎn)不重合),從點(diǎn)看這兩座建筑物的視角分別為問點(diǎn)在何處時(shí),最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則(
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠C=90°,M是BC的中點(diǎn),若 ,則sin∠BAC=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

M的軌跡方程;

當(dāng)|OP|=|OM|時(shí),求的方程及的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),它的離心率是雙曲線的離心率的倒數(shù).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過橢圓的右焦點(diǎn)作直線交橢圓、兩點(diǎn),交軸于點(diǎn),若,,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案