(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為組成數(shù)對(duì)(,并構(gòu)成函數(shù)
(Ⅰ)寫(xiě)出所有可能的數(shù)對(duì)(,并計(jì)算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.

(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15個(gè).P(A)=
(Ⅱ)P(B)==。

解析試題分析:(Ⅰ)所有基本事件如下:
(1,-1),(1,1),(1,2),(1,3),(1,4),
(2,-1),(2,1),(2,2),(2,3),(2,4),
(3,-1),(3,1),(3,2),(3,3),(3,4),共有15個(gè). ……2分
設(shè)事件“a≥2,且b≤3”為A,     ……3分
則事件A包含的基本事件有(2,-1),(2,1),(2,2),(2,3),(3,-1),(3,1),(3,2),(3,3)共8個(gè),  ……4分
所以P(A)=         ……5分
(Ⅱ)設(shè)事件“f(x)=ax2-4bx+1在區(qū)間[1,+∞)上為增函數(shù)”為B,因函數(shù)f(x)=ax2-4bx+1的圖象的對(duì)稱軸為x=       ……7分
且a>0,
所以要使事件B發(fā)生,只需≤1即2b≤a.    ……9分
由滿足題意的數(shù)對(duì)有(1,-1)、(2,-1)、(2,1)、(3,-1)、(3,1),共5個(gè),……10分
∴P(B)==        ……11分
考點(diǎn):本題主要考查古典概型的概率計(jì)算,二次函數(shù)圖象和性質(zhì)。
點(diǎn)評(píng):綜合題,古典概型概率的計(jì)算,關(guān)鍵是明確基本事件總數(shù)及導(dǎo)致事件發(fā)生的基本事件數(shù),根據(jù)題中條件,首先得到a,b的關(guān)系。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)處取得極小值2.
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)函數(shù),若對(duì)于任意,總存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱x0的不動(dòng)點(diǎn),已知函數(shù)a≠0).
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)a為何值時(shí),方程有三個(gè)不同的實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2) 若在[-1,1]上單調(diào)遞減,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
若函數(shù)對(duì)任意的實(shí)數(shù),,均有,則稱函數(shù)是區(qū)間上的“平緩函數(shù)”.  
(1) 判斷是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說(shuō)明理由;
(2) 若數(shù)列對(duì)所有的正整數(shù)都有 ,設(shè),
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題9分)函數(shù)
(Ⅰ)判斷并證明的奇偶性;
(Ⅱ)求證:在定義域內(nèi)恒為正。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)函數(shù)為奇函數(shù),且在上為增函數(shù),  , 若對(duì)所有都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分) 設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)上的最大值;
(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案