19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,則目標函數(shù)z=x+y的最小值為( 。
A.$\frac{1}{2}$B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 作出約束條件的平面區(qū)域,化簡z=x+y為y=-x+z,從而結合圖象求解即可.

解答 解:化簡z=x+y為y=-x+z,
由題意作$\left\{\begin{array}{l}x≤1\\ y≥\frac{2}{3}\\ 2x-y≥0\end{array}\right.$,平面區(qū)域如下,

結合圖象可知,
當y=-x+z經過A時,表達式取得最小值,
由$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{3}}\end{array}\right.$,可得A($\frac{1}{3}$,$\frac{2}{3}$),此時z=1;
故選:B.

點評 本題考查了線性規(guī)劃,同時考查了數(shù)形結合的思想方法與轉化思想的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.設集合A={x|y=$\sqrt{{x^2}-4x+3}$},B={y|y=x+$\frac{m}{x}$(m>0),x∈∁RA},若2$\sqrt{m}$∈B,則m取值范圍是(1,9).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設關于x,y的不等式組$\left\{\begin{array}{l}{2x-y+1>0}\\{x-m<0}\\{y+m>0}\end{array}\right.$表示的平面區(qū)域內存在點P(x0,y0)滿足x0-2y0=2,則m的取值范圍是( 。
A.(-∞,3)B.($\frac{2}{3}$,+∞)C.(2,+∞)D.[$\frac{2}{3}$,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=$\sqrt{1-lg(x+2)}$的定義域為(-2,8].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某學校研究性學習小組對該校高三學生視力情況進行調查,在高三的全體1000名學生中隨機抽取了若干名學生的體檢表,并得到 如直方圖:
(Ⅰ)若直方圖中前三組的頻率成等比數(shù)列,后四組的頻率成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);
(Ⅱ)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對年紀名次在1~50名和951~1000名的學生進行了調查,得到如圖表中數(shù)據(jù):
1-50951-1000
近視4132
不近視918
根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認為視力與學習成績有關系?
(Ⅲ)在(Ⅱ)中調查的100名學生中,在不近視的學生中按照成績是否在前50名分層抽樣抽取了9人,進一步調查他們良好的護眼習慣,并且在這9人中任取3人,記名次在1~50名的學生人數(shù)為X,求X的分布列和數(shù)學期望.
附:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,C,D是⊙O上的點,AD是∠BAC的平分線,過點D作DE⊥AC,交AC的延長線于點E.
(1)求證:DE2=EC•EA;
(2)過D點作DF⊥AB,垂足為F,求證:$\frac{AF}{AE}$=$\frac{CE}{FB}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.某電子商務公司對10000名網(wǎng)絡購物者2014年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9]內,其頻率分布直方圖如圖所示.直方圖中的a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.命題:“?x∈R,x2-x-1<0”的否定是?x∈R,x2-x-1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若復數(shù)$\frac{a-i}{1+i}$為純虛數(shù),則實數(shù)a的值為( 。
A.iB.0C.1D.-1

查看答案和解析>>

同步練習冊答案