【題目】已知函數.
(1)當時,求該函數的定義域;
(2)當時,如果對任何都成立,求實數的取值范圍;
(3)若,將函數的圖像沿軸方向平移,得到一個偶函數的圖像,設函數的最大值為,求的最小值.
【答案】(1);(2);(3)最小值為1.
【解析】
(1)解真數大于0的不等式即可;
(2)通過分離參數,將問題轉化為恒成立問題,進而求得a的取值范圍;
(3)先設出平移t個單位,再根據g(x)為偶函數得,然后根據對數函數的單調性求得h(a),最后由基本不等式求得h(a)的最小值。
(1)a=-1時,f(x)=log2(ax2+2x-a)=log2(-x2+2x+1),
解-x2+2x+1>0得
所以函數的定義域為
(2) 當a≤0時,f(x)≥1即log2(ax2+2x-a)≥1,
即ax2+2x-a-2≥0對任何x∈[2,3]都成立,
則
令,因為當x∈[2,3]時是單調遞增函數
所以
所以,又因為
所以a的取值范圍為
(3)當a<0時,設將f(x)的圖象沿x軸方向平移t個單位得到g(x)的圖象,
則g(x)=[a(x+t)2+2(x+t)-a]=[ax2+(2at+2)x+at2+2t-a],
因為g(x)為偶函數,所以g(-x)=g(x),
則[ax2-(2at+2)x+at2+2t-a]=[ax2+(2at+2)x+at2+2t-a],
所以2at+2=0,所以
所以
因為a<0所以x=0時,
因為此時,解得
所以
即的最小值為1
科目:高中數學 來源: 題型:
【題目】如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近的一點,為圓周上靠近的一點,且∥.現在準備從經過到建造一條觀光路線,其中到是圓弧,到是線段.設,觀光路線總長為.
(1)求關于的函數解析式,并指出該函數的定義域;
(2)求觀光路線總長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當中()的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據上述分析結果回答下列問題:
(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?
(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數,如果同時滿足以下三條:①對任意的,總有;②;③若,都有成立,則稱函數為理想函數.
(1) 若函數為理想函數,求的值;
(2)判斷函數是否為理想函數,并予以證明;
(3) 若函數為理想函數,假定,使得,且,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校舉辦的集體活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得1分、2分、3分的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇得到相應的分數,結束游戲;也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部分數都歸零,游戲結束。設選手甲第一關、第二關、第三關的概率分別為,,,選手選擇繼續(xù)闖關的概率均為,且各關之間闖關成功互不影響
(I)求選手甲第一關闖關成功且所得分數為零的概率
(II)設該學生所得總分數為X,求X的分布列與數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某企業(yè)生產的某種產品中抽取500件,測量這些產品的一項質量指標值,由測量結果得如下頻率分布直方圖:
(1)求這500件產品質量指標值的樣本平均數 和樣本方差s2(同一組中數據用該組區(qū)間的中點值作代表);
(2)由直方圖可以認為,這種產品的質量指標值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數 ,σ2近似為樣本方差s2 .
(i)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ii)某用戶從該企業(yè)購買了100件這種產品,記X表示這100件產品中質量指標值位于區(qū)間(187.8,212.2)的產品件數,利用(i)的結果,求EX.
附: ≈12.2.
若Z~N(μ,σ2)則P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過市場調查,某種商品在銷售中有如下關系:第x(1≤x≤30,x∈N+)天的銷售價格(單位:元/件)為f(x)=第x天的銷售量(單位:件)為g(x)=a-x(a為常數),且在第20天該商品的銷售收入為1 200元(銷售收入=銷售價格×銷售量).
(1)求a的值,并求第15天該商品的銷售收入;
(2)求在這30天中,該商品日銷售收入y的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com