已知函數(shù)
(1)求函數(shù)的最小正周期及在區(qū)間上的最大值和最小值;
(2)若,求的值.

(1)(2)

解析試題分析:(1)先利用誘導(dǎo)公式,二倍角公式,化一公式將此函數(shù)化簡為的形式,利用周期公式,求周期,用x的范圍求出整體角的范圍,結(jié)合三角函數(shù)圖像求其最值。(2)解,角的范圍和同角三角函數(shù)基本關(guān)系式可求得的值,用配湊法表示,用兩角差的余弦公式求
試題解析:解:
(1)最小正周期為;最大值為2,最小值為-1
(2)由(1)可知
又因為,所以,得
 
考點(diǎn):三角函數(shù)化簡變形,同角三角函數(shù)基本關(guān)系式 ,配湊法表示角

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(-3,).
(1)求sin 2α-tan α的值;
(2)若函數(shù)f(x)=cos(x-α)cos α-sin(x-α)sin α,求函數(shù)y=f-2f2(x)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=coscos-sin xcos x
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)求函數(shù)f(x)單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)計算:
(2)已知,求下列各式的值:
        ②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖像向左平移個單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角、、的對邊分別為、,且
(Ⅰ)求角的大;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,且的最小正周期為.
(Ⅰ)若,,求的值;
(Ⅱ)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求的值;
(2)若,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案