已知點(diǎn)在雙曲線上,且雙曲線的一條漸近線的方程是
(1)求雙曲線的方程;
(2)若過點(diǎn)且斜率為的直線與雙曲線有兩個不同交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個不同點(diǎn),若以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.
(1);(2);(3).

試題分析:(1)要求雙曲線的標(biāo)準(zhǔn)方程,必須找到關(guān)于的兩個等式,題中一條漸近線方程為,說明,這是一個等式,點(diǎn)在雙曲線上,那么此點(diǎn)坐標(biāo)適合雙曲線方程,代入進(jìn)去又可得到一個等式,這樣可解得;(2)直線與雙曲線有兩個不同的交點(diǎn),直接把直線方程與雙曲線方程聯(lián)立方程組,此方程組有兩解,方法是消去一個元,得到關(guān)于的二次方程,此方程是二次方程有兩個不等的實(shí)根,則;(3)題設(shè)條件說明,如果設(shè),則有,可用表示出來,而在(2)中可用表示出來,代入剛才的等式,得到的方程,可解得
試題解析:(1)由題知,有
解得
因此,所求雙曲線的方程是
(2)∵直線過點(diǎn)且斜率為
∴直線
聯(lián)立方程組
又直線與雙曲線有兩個不同交點(diǎn),

解得
(3)設(shè)交點(diǎn)為,由(2)可得
又以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),
因此,為坐標(biāo)原點(diǎn)).
于是,
,解得
滿足,且,
所以,所求實(shí)數(shù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè):的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓為焦點(diǎn),離心率.設(shè)的一個交點(diǎn).

(1)當(dāng)時,求橢圓的方程.
(2)在(1)的條件下,直線的右焦點(diǎn),與交于兩點(diǎn),且等于的周長,求的方程.
(3)求所有正實(shí)數(shù),使得的邊長是連續(xù)正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線的方程為,過拋物線上一點(diǎn)()作斜率為的兩條直線分別交拋物線兩點(diǎn)(三點(diǎn)互不相同),且滿足).
(1)求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線上一點(diǎn),滿足,證明線段的中點(diǎn)在軸上;
(3)當(dāng)=1時,若點(diǎn)的坐標(biāo)為,求為鈍角時點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)如圖,分別過橢圓左右焦點(diǎn)的動直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率、、滿足.已知當(dāng)軸重合時,,
(1)求橢圓的方程;
(2)是否存在定點(diǎn),使得為定值.若存在,求出點(diǎn)坐標(biāo)并求出此定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線C:=1,若存在過右焦點(diǎn)F的直線與雙曲線C相交于A,B 兩點(diǎn)且=3,則雙曲線離心率的最小值為(  )
A.B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)、是定點(diǎn),且均不在平面上,動點(diǎn)在平面上,且,則點(diǎn)的軌跡為(  )
A.圓或橢圓B.拋物線或雙曲線C.橢圓或雙曲線D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過B1作直線交橢圓于P、Q兩點(diǎn),使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

同步練習(xí)冊答案