19.在五張牌中有三張K和兩張A,如果不放回地一次抽取兩張牌.記“第2次抽到撲克牌K的概率為x”,“在第一次抽到撲克牌K的條件下,第二次抽到撲克牌K的概率為y”,則實(shí)數(shù)x,y依次為( 。
A.$\frac{3}{5}{,^{\;}}\frac{1}{2}$B.$\frac{3}{5}{,^{\;}}\frac{3}{5}$C.$\frac{1}{2}{,^{\;}}\frac{1}{2}$D.$\frac{3}{5}{,^{\;}}\frac{2}{5}$

分析 利用互斥事件概率加法公式和相互獨(dú)立事件概率乘法公式能求出x;利用條件概率計(jì)算公式能求出y.

解答 解:∵在五張牌中有三張K和兩張A,如果不放回地一次抽取兩張牌.
記“第2次抽到撲克牌K的概率為x”,
“在第一次抽到撲克牌K的條件下,第二次抽到撲克牌K的概率為y”,
∴x=$\frac{3}{5}×\frac{2}{4}+\frac{2}{5}×\frac{3}{4}$=$\frac{3}{5}$,
y=$\frac{\frac{3}{5}×\frac{2}{4}}{\frac{3}{5}}$=$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式、相互獨(dú)立事件概率乘法公式、條件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)隨機(jī)變量Z的分布列為若$E(Z)=\frac{15}{8}$,則x=$\frac{1}{8}$y=$\frac{3}{8}$
 Z 1 2 3
 P 0.5 x y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知實(shí)數(shù)a和b是區(qū)間[0,1]內(nèi)任意兩個(gè)數(shù),則使b<a2的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.同時(shí)擲六個(gè)面分別標(biāo)有數(shù)字1、2、3、4、5、6的質(zhì)地均勻和大小相同的兩枚正方形骰子,計(jì)算向上的點(diǎn)數(shù)之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)m為常數(shù),拋物線y=x2+2mx-m3-2m2,則當(dāng)m分別取0,-3,-2時(shí),在平面直角坐標(biāo)系中圖象最恰當(dāng)?shù)氖牵ㄟ@里省略了坐標(biāo)軸)( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知函數(shù)f(x)=$\frac{1}{2}$x2-ax+(a-1)lnx,a>1.討論函數(shù)f(x)的單調(diào)性;
(2)已知函數(shù)f (x)=lnx,g(x)=ex.設(shè)直線l為函數(shù) y=f (x) 的圖象上一點(diǎn)A(x0,f (x0))處的切線.問在區(qū)間(1,+∞)上是否存在x0,使得直線l與曲線y=g(x)也相切.若存在,這樣的x0有幾個(gè)?,若沒有,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=sin(2x-$\frac{π}{6}$)-m在[$\frac{π}{2}$,π]上有兩個(gè)零點(diǎn),則m的取值范圍為( 。
A.[$\frac{1}{2},1$]B.[-1,-$\frac{1}{2}$]C.[$\frac{1}{2},1$)D.(-1,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$)的最小正周期是( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2x3-3ax2+1(x∈R).
(1)若f(x)在x=2處取得極值,求實(shí)數(shù)a的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在閉區(qū)間[0,2]的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案