若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個(gè)值.寫出函數(shù)的解析式及最小值(結(jié)論不要求證明)
(1) xÎ(-2,2);(2) a2b+ab2比a3+b3接近; (3) f(x)的最小值為0。
解析試題分析:(1)根據(jù)新定義得到不等式|x2-1|<3,然后求出x的范圍即可.
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,依據(jù)新定義寫出不等式,利用作差法證明:a2b+ab2比a3+b3接近2ab,
(3)依據(jù)新定義寫出函數(shù)f(x)的解析式,f(x)= 1+sinx,x
1-sinx,x
=1-|sinx|,x≠kπ直接寫出它的奇偶性、最小正周期、最小值和單調(diào)性,即可.
(1) xÎ(-2,2); ---------------4分
(2) 對(duì)任意兩個(gè)不相等的正數(shù)a、b,有,,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/4/1ehic3.png" style="vertical-align:middle;" />,
所以,即a2b+ab2比a3+b3接近; ------8分 (3) ,kÎZ,
f(x)的最小值為0, --------------------12分
考點(diǎn):本題主要考查了新定義題目,直線審題是能夠解題的根據(jù),新定義問題,往往是結(jié)合相關(guān)的知識(shí),利用已有的方法求出所求結(jié)果.注意轉(zhuǎn)化思想的應(yīng)用.
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用定義來表示出函數(shù)f(x)然后結(jié)合三角函數(shù)的性質(zhì)來得到結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題:“,使等式成立”是真命題.
(1)求實(shí)數(shù)m的取值集合M;
(2)設(shè)不等式的解集為N,若是的必要條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(1)試求使等式成立的x的取值范圍;
(2)若關(guān)于x的不等式的解集不是空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
若不等式|8x+9|<7和不等式ax2+bx>2的解集相等,則實(shí)數(shù)a、b的值分別為( )
A.a(chǎn)=-8,b=-10 |
B.a(chǎn)=-4,b=-9 |
C.a(chǎn)=-1,b=9 |
D.a(chǎn)=-1,b=2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com