【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點(diǎn),直線與平面所成角的正弦值為,點(diǎn)在上移動(dòng).
(Ⅰ)證明:無(wú)論點(diǎn)在上如何移動(dòng),都有平面平面;
(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】
(Ⅰ)推導(dǎo)出AE⊥PA,AE⊥AD,從而AE⊥平面PAD,由此能證明無(wú)論點(diǎn)F在PC上如何移動(dòng),都有平面AEF⊥平面PAD.
(Ⅱ)以A為原點(diǎn),AE為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C﹣AF﹣E的余弦值.
(Ⅰ)連接
∵底面為菱形,,
∴是正三角形,
∵是中點(diǎn),∴
又,∴
∵平面,平面,
∴,又
∴平面,又平面
∴平面平面.
(Ⅱ)由(Ⅰ)得,,,兩兩垂直,以,,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,
∵平面,
∴就是與平面所成的角,
在中,,即,
設(shè),則,得,
又,設(shè),則,
所以,
從而,∴,
則,,,,,
,,
所以,,,
設(shè)是平面一個(gè)法向量,則
取,得
又平面,∴是平面的一個(gè)法向量,
∴
∴二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬(wàn)元,每生產(chǎn)萬(wàn)件,需另投入流動(dòng)成本萬(wàn)元,當(dāng)年產(chǎn)量小于萬(wàn)件時(shí),(萬(wàn)元);當(dāng)年產(chǎn)量不小于7萬(wàn)件時(shí),(萬(wàn)元).已知每件產(chǎn)品售價(jià)為6元,假若該同學(xué)生產(chǎn)的商品當(dāng)年能全部售完.
(1)寫出年利潤(rùn)(萬(wàn)年)關(guān)于年產(chǎn)量(萬(wàn)件)的函數(shù)解析式;(注:年利潤(rùn)=年銷售收入-固定成本-流動(dòng)成本)
(2)當(dāng)年產(chǎn)量約為多少萬(wàn)件時(shí),該同學(xué)的這一產(chǎn)品所獲年利潤(rùn)最大?最大年利潤(rùn)是多少?
(取).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.
(1)求A;
(2)若△ABC的面積S=c2,求sin C的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,由一塊扇形空地,其中,米,計(jì)劃在此扇形空地區(qū)域?yàn)閷W(xué)生建燈光籃球運(yùn)動(dòng)場(chǎng),區(qū)域內(nèi)安裝一批照明燈,點(diǎn)、選在線段上(點(diǎn)、分別不與點(diǎn)、重合),且.
(1)若點(diǎn)在距離點(diǎn)米處,求點(diǎn)、之間的距離;
(2)為了使運(yùn)動(dòng)場(chǎng)地區(qū)域最大化,要求面積盡可能的小,記,請(qǐng)用表示的面積,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】指出下列命題是全稱量詞命題還是存在量詞命題,并判斷它們的真假.
(1)x∈N,2x+1是奇數(shù);
(2)存在一個(gè)x∈R,使=0;
(3)對(duì)任意實(shí)數(shù)a,|a|>0;
(4)有一個(gè)角α,使sinα=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com