10.若角α滿足sinα+2cosα=0,則sin2α的值等于-$\frac{4}{5}$.

分析 根據(jù)sinα+2cosα=0求出tanα的值,再把sin2α化為切函數(shù),從而求出它的值.

解答 解:∵sinα+2cosα=0,
∴tanα=-2,
∴sin2α=2sinαcosα
=$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{2tanα}{{tan}^{2}α+1}$
=$\frac{2×(-2)}{{(-2)}^{2}+1}$
=-$\frac{4}{5}$.
故答案為:-$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)關(guān)系與二倍角公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意的兩個(gè)正實(shí)數(shù)x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的導(dǎo)數(shù)),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若復(fù)數(shù)z滿足z•i=1+i(i是虛數(shù)單位),則z的共軛復(fù)數(shù)是1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是(  )
(1)已知等比數(shù)列{an},則“數(shù)列{an}單調(diào)遞增”是“數(shù)列{an}的公比q>1”的充分不必要條件;
(2)二項(xiàng)式${({2x+\frac{1}{{\sqrt{x}}}})^5}$的展開式按一定次序排列,則無理項(xiàng)互不相鄰的概率是$\frac{1}{5}$;
(3)已知$S=\int_0^{\frac{1}{2}}{\sqrt{\frac{1}{4}-{x^2}}}dx$,則$S=\frac{π}{16}$;
(4)為了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x+1)lnx-ax+2.
(1)當(dāng)a=1時(shí),求在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上具有單調(diào)性,求實(shí)數(shù)a的取值范圍;
(3)求證:$\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+…+\frac{1}{2n+1}<\frac{1}{2}ln(n+1)$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=ex-ax2+1,曲線y=f(x)在x=1處的切線方程為y=bx+2.
(1)求a,b的值;
(2)當(dāng)x>0時(shí),求證:f(x)≥(e-2)x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是同一平面內(nèi)的三個(gè)向量,其中$\overrightarrow{a}$=(2,1)
(1)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐標(biāo);
(2)若|$\overrightarrow$|=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=(x-2)ex+a.(a∈R)
(I)試確定函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(II)設(shè)x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn),證明:x1+x2<2.
參考公式:(et-x)'=-et-x(t為常數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=xex的最小值是-$\frac{1}{e}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案