函數(shù)f(x)=-loga(x+2)+1(a>0,a≠1)的圖象過定點(diǎn)
 
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令x+2=1求出x=-1,從而求出y=1,故函數(shù)f(x)=-loga(x+2)+1(a>0,a≠1)的圖象過定點(diǎn)(-1,1).
解答: 解:令x+2=1,得x=-1,
此時(shí)f(-1)=-loga1+1=1,
故函數(shù)f(x)=-loga(x+2)+1(a>0,a≠1)的圖象過定點(diǎn)(-1,1).
故答案為:(-1,1).
點(diǎn)評:本題主要考查對數(shù)函數(shù)過定點(diǎn)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知f(α)=
sin(π-α)cos(2π-α)
sin(
π
2
+α)tan(π+α)
,求f(
31π
3

(2)已知cos(
π
2
+α)=2sin(α-
π
2
),求:
sin(π-α)+cos(α+π)
5cos(
2
-α)+3sin(
2
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)(
2
3
-2+(1-
2
0-(3
3
8
 
2
3
-160.75       
(2)
2lg2+lg3
1+
1
2
lg0.36+
1
3
lg8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Rt△ABC的三邊長分別是AC=3,BC=4,AB=5,以AB所在直線為軸,將此三角形旋轉(zhuǎn)一周,求所得到的旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ex-ax-2(a∈R)
(1)討論函數(shù)的單調(diào)性;
(2)若f(x)≥0恒成立,證明:x1<x2時(shí),
f(x2)-f(x1)
x2-x1
>2(e x1-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=2tanx+
2sin2
x
2
-1
sin
x
2
cos
x
2
,則f(
π
12
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c∈R,函數(shù)f(x)=ax2+bx+c,若f(0)=f(4)>f(1),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
log3x,x≥0
2x,x<0
,則f[f(
1
9
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinacosα=
1
4
且α∈(0,
π
4
),則cosα-sinα=
 

查看答案和解析>>

同步練習(xí)冊答案