【題目】【2017重慶二診】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點,

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

【答案】(Ⅰ);(Ⅱ) 面積的最大值為3,此時直線的方程為

【解析】(Ⅰ)由已知,易知求得點, 的坐標,由,利用向量的坐標表示可求得點坐標,聯(lián)立右焦點坐標及橢圓中關(guān)系式,代入橢圓方程進行運算即可;(Ⅱ)由橢圓對稱性得, ,由題意,聯(lián)立直線與橢圓的方程,求得的底邊長,再由點到直線距離公式求得的高,從而建立所求三角形面積的函數(shù),通過求面積函數(shù)的最大值,從而問題可得解.

試題解析:(Ⅰ)由題知,故,代入橢圓的方程得,又,

,橢圓;

(Ⅱ)由題知,直線不與軸重合,故可設(shè),由,

設(shè),則,由關(guān)于原點對稱知,

,

, ,即,當且僅當時等號成立,

面積的最大值為3,此時直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校舉行元旦匯演,七位評委為某班的小品打出的分數(shù)如莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的方差是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點分別為,左、右頂點分別為,上、下頂點分別為,四邊形與四邊形的面積之和為4.

(1)求橢圓的方程;

(2)直線與橢圓交于兩點,其中為坐標原點,求直線被以線段為直徑的圓截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,, 分別為的中點,點在線段上.

(Ⅰ)求證:平面;

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017福建三明5月質(zhì)檢】已知直線與拋物線相切,且與軸的交點為,點.若動點與兩定點所構(gòu)成三角形的周長為6.

() 求動點的軌跡的方程;

() 設(shè)斜率為的直線交曲線兩點,當,且位于直線的兩側(cè)時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉辦校園足球賽,組委會為了做好服務(wù)工作,招募了12名男志愿者和10名女志愿者,調(diào)查發(fā)現(xiàn)男女志愿者中分別有8人和4人喜歡看足球比賽,其余不喜歡
(1)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:

喜歡看足球比賽

不喜歡看足球比賽

總計

總計


(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.10的前提下認為性別與喜歡看足球比賽有關(guān)?
(3)從女志愿者中抽取2人參加某場足球比賽服務(wù)工作,若其中喜歡看足球比賽的人數(shù)為ξ,求ξ的分布列和數(shù)學期望.
附:參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):

P(K2≥k0

0.4

0.25

0.10

0.010

k0

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017湖南長沙二模】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:

質(zhì)量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?

(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017河北唐山三!已知函數(shù), .

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間有唯一零點,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.

(1)求證:BD1∥平面A1DE;
(2)求直線A1E與平面AD1E所成角.

查看答案和解析>>

同步練習冊答案