已知函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值,并求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-ax在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
考點:抽象函數(shù)及其應(yīng)用
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令x=1,y=0,求出f(0),x不變,令y=0,求出f(x);
(2)化簡g(x),討論g(x)是單調(diào)增函數(shù),則區(qū)間在對稱軸的右邊;若是單調(diào)減函數(shù),則區(qū)間在對稱軸的左邊,列出不等式,解出,最后求并集.
解答: 解:(1)令x=1,y=0,則由題意得,f(1)-f(0)=1×2,
∴f(0)=f(1)-2=-2;
令y=0,則f(x)-f(0)=x(x+1),
∴f(x)=x2+x-2.
(2)g(x)=f(x)-ax=x2+(1-a)x-2,
由于g(x)在區(qū)間[-2,2]上單調(diào)函數(shù),
若是單調(diào)增函數(shù),則區(qū)間在對稱軸的右邊,即-
1-a
2
≤-2,解得a≤-3,
若是單調(diào)減函數(shù),則區(qū)間在對稱軸的左邊,即即-
1-a
2
≥2,解得a≥5.
故實數(shù)a的取值范圍是(-∞,-3]∪[5,+∞).
點評:本題考查抽象函數(shù)值和函數(shù)解析式的求法,考查函數(shù)的單調(diào)性及運用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,設(shè)函數(shù)F(x)=f(x)-mx,若F(x)在區(qū)間[-2,2]上是單調(diào)函數(shù),求實數(shù)m的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=f(x)-kx,x∈[-2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出判斷輸入數(shù)x,若x是正數(shù),輸出它的平方,若不是,輸出它的相反數(shù)的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}為等差數(shù)列,首項為3且a1+a2+a3=15,數(shù)列{bn}的前n項和為Sn,b1=1,bn+1=2Sn+1,(n∈N+
(1)求數(shù)列{an}的通項公式
(2)求數(shù)列{bn}的通項公式
(3)設(shè)cn=anbn,求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
x-1
x+1
;
(1)判斷f(x)的奇偶性,并證明;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+1(x≤0)
-2x(x>0)
,求使函數(shù)值為10的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-x-1.
(Ⅰ)若函數(shù)g(x)=-ex+x+a+1,x∈[-1,ln
4
3
]有唯一零點,求a的取值范圍;
(Ⅱ)當(dāng)x≥0時,f(x)≥(t-1)x恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為正數(shù),且a2-2ab-9b2=0,則lg(a2+ab-6b2)-lg(a2+4ab+15b2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log 
1
3
(x2-3x)的增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案