如圖所示,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的面對(duì)角線A1B上存在一點(diǎn)P使得AP+D1P取得最小值,則此最小值為
2+
2
2+
2
分析:把對(duì)角面A1C繞A1B旋轉(zhuǎn),使其與△AA1B在同一平面上,連接AD1并求出,根據(jù)平面內(nèi)兩點(diǎn)之間線段最短,可知就是最小值.
解答:解:把對(duì)角面A1C繞A1B旋轉(zhuǎn),使其與△AA1B在同一平面上,連接AD1
則在△AA1D中,AD1=
1+1-2×1×1×cos135°
=
2+
2
為所求的最小值.
故答案為
2+
2
點(diǎn)評(píng):本題的考點(diǎn)是點(diǎn)、線、面間的距離計(jì)算,主要考查考查棱柱的結(jié)構(gòu)特征,考查平面內(nèi)兩點(diǎn)之間線段,最短考查計(jì)算能力,空間想象能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長(zhǎng)為1的正方體的面對(duì)角線上存在 

一點(diǎn)使得取得最小值,則此最小值為                                                

A.          B.         C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆海南瓊海嘉積中學(xué)高一下學(xué)期教學(xué)監(jiān)測(cè)(二)理數(shù)學(xué)卷(解析版) 題型:選擇題

如圖所示,在棱長(zhǎng)為1的正方體的面對(duì)角線上存在一點(diǎn)使得最短,則的最小值為(    )

A.        B.        C.          D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年浙江省高二上學(xué)期第一次統(tǒng)練試題理科數(shù)學(xué) 題型:填空題

如圖所示,在棱長(zhǎng)為1的正方體的面對(duì)角線上存在一點(diǎn)使得取得最小值,則此最小值為              

 

 

 

(第17題圖)

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省溫州市八校高一下學(xué)期期末聯(lián)考試卷數(shù)學(xué) 題型:選擇題

如圖所示,在棱長(zhǎng)為1的正方體的面

對(duì)角線上存在一點(diǎn)使得取得最小值,則此

最小值為   (     )

A.            B.   C.          D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案