(2013•合肥二模)巳知等比數(shù)列{an}的首項和公比都為2,且a1,a2分別為等差數(shù)列{bn}中的第一、第三項.
(I)求數(shù)列{an}、{bn}的通項公式;
(II)設(shè)Cn=
3(log2a3n)bn
,求{cn}的前n項和Sn
分析:(I)利用等比數(shù)列{an}的首項和公比都為2,可求數(shù)列{an}的通項公式,利用a1,a2分別為等差數(shù)列{bn}中的第一、第三項,可求{bn}的通項公式;
(II)確定{cn}的通項,利用裂項法,可求前n項和Sn
解答:解:(I)∵等比數(shù)列{an}的首項和公比都為2,
an=2n
∵a1,a2分別為等差數(shù)列{bn}中的第一、第三項
∴b1=2,b3=4
∴bn=n+1;
(II)設(shè)Cn=
3
(log2a3n)bn
=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
點評:本題考查等差數(shù)列與等比數(shù)列的通項,考查數(shù)列的求和,考查裂項法的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)已知i是虛數(shù)單位,則復(fù)數(shù)
-2+i
1+i
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)點(x,y)滿足
x+y-1≥0
x-y+1≥0
x≤a
,若目標(biāo)函數(shù)z=x-2y的最大值為1,則實數(shù)a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)定義域為R的奇函數(shù)f(x )的圖象關(guān)于直線.x=1對稱,當(dāng)x∈[0,1]時,f(x)=x,方程 f(x)=log2013x實數(shù)根的個數(shù)為
( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)在銳角△ABC 中,角 A,B,C 所對邊分別為 a,b,c,且 bsinAcosB=(2c-b)sinBcosA.
(I)求角A;
(II)已知向量
m
=(sinB,cosB),
n
=(cos2C,sin2C),求|
m
+
n
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點F(-c,0)(c>0),作傾斜角為
π
6
的直線FE交該雙曲線右支于點P,若
OE
=
1
2
OF
+
OP
),且
OE
EF
=0則雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊答案