已知α、β、γ是三個不同的平面,則下列命題正確的是( )
A.若α⊥γ,β⊥γ,則α∥β
B.若β∥α,γ∥α,則β∥γ
C.若α、β、γ兩兩相交,則交線互相平行
D.若α與β、γ所成的銳二面角相等,則β∥γ
【答案】分析:若α⊥γ,β⊥γ,則α∥β或α與β相交;若β∥α,γ∥α,則β∥γ;若α、β、γ兩兩相交,則交線互相平行、相交或異面;若α與β、γ所成的銳二面角相等,則β∥γ或β與γ相交.
解答:解:若α⊥γ,β⊥γ,則α∥β或α與β相交,故A不正確;
若β∥α,γ∥α,則β∥γ,故B正確;
若α、β、γ兩兩相交,則交線互相平行、相交或異面,故C不正確;
若α與β、γ所成的銳二面角相等,則β∥γ或β與γ相交,故D不正確.
故選B.
點(diǎn)評:本題考查平面與平面間的位置關(guān)系,是基礎(chǔ)題.解題時要認(rèn)真審題,仔細(xì)解答,注意平面的基本性質(zhì)和推論的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若
a
2+
b
2=0,則
a
=
b
=
0
;
②已知
a
、
b
、
c
是三個非零向量,若
a
+
b
=
0
,則|
a
c
|=|
b
c
|,
③在△ABC中,a=5,b=8,c=7,則
BC
CA
=20;
a
b
是共線向量?
a
b
=|
a
||
b
|.
其中真命題的序號是
 
.(請把你認(rèn)為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若
a
2
+
b
2
=0
,則
a
=
b
=
0
;
②若A(x1,y1),B(x2,y2),則
1
2
AB
=(
x1+x2
2
,
y1+y2
2
)

③已知
a
,
b
,
c
是三個非零向量,若
a
+
b
=
0
;,則|
a
c
|=|
b
c
|

④已知λ1>0,λ2>0,
e1
,
e2
是一組基底,
a
1
e1
2
e2
,則
a
e1
不共線,
a
e2
也不共線;
a
b
共線?
a
b
=|
a
||
b
|

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知α1,α2,α3是三個相互平行的平面,平面α1,α2之間的距離為d1,平面α2,α3之前的距離為d2,直線l與α1,α2,α3分別相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
,
c
是三個非零向量,則下列命題中,真命題的個數(shù)是( 。
(1)|
a
b
|=|
a
|•|
b
|?
a
b
; 
(2)
a
,
b
反向?
a
b
=-|
a
|•|
b
|
;
(3)
a
b
?|
a
+
b
|=|
a
-
b
|
;
(4)|
a
|=|
b
|?|
a
c
|=|
b
c
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙、丙是三個條件,如果甲是乙的必要條件,丙是乙的充分但不必要條件,那么( 。
A、丙是甲的充分不必要條件B、丙是甲的必要不充分條件C、丙是甲的充分必要條件D、丙既不是甲的充分條件也不是甲的必要條件

查看答案和解析>>

同步練習(xí)冊答案