【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對任意的正實(shí)數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實(shí)數(shù)m的取值范圍為( )
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]
【答案】D
【解析】解:對任意的正實(shí)數(shù)a,總存在x0∈[1,4],使得f(x0)≥mm≤f(x)max,x∈[1,4].
令u(x)= ﹣ax,∵a>0,∴函數(shù)u(x)在x∈[1,4]單調(diào)遞減,
∴u(x)max=u(1)=4﹣a,u(x)min=1﹣a.①a≥4時(shí),0≥4﹣a>1﹣a,則f(x)max=a﹣1≥3.②4>a>1時(shí),4﹣a>0>1﹣a,則f(x)max={4﹣a,a﹣1}max<3.③a≤1時(shí),4﹣a>1﹣a≥0,則f(x)max=4﹣a≥3.
綜上①②③可得:m≤3.
∴實(shí)數(shù)m的取值范圍為(﹣∞,3].
故選:D.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最值及其幾何意義,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲导纯梢越獯鸫祟}.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間(0,π)上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,以坐標(biāo)原點(diǎn)O為圓心的單位圓與x軸正半軸相交于點(diǎn)A,點(diǎn)B、P在單位圓上,且B(﹣ , ),∠AOB=α.
(1)求 的值;
(2)設(shè)∠AOP=θ( ≤θ≤ ), = + ,四邊形OAQP的面積為S,f(θ)=( ﹣ )2+2S2﹣ ,求f(θ)的最值及此時(shí)θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義min{a,b}= ,若函數(shù)f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在區(qū)間[m,n]上的值域?yàn)閇 , ],則區(qū)間[m,n]長度的最大值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年5月,北京市提出地鐵分段計(jì)價(jià)的相關(guān)意見,針對“你能接受的最高票價(jià)是多少?”這個(gè)問題,在某地鐵站口隨機(jī)對50人進(jìn)行調(diào)查,調(diào)查數(shù)據(jù)的頻率分布直方圖及被調(diào)查者中35歲以下的人數(shù)與統(tǒng)計(jì)結(jié)果如下: (Ⅰ)根據(jù)頻率分布直方圖,求a的值,并估計(jì)眾數(shù),說明此眾數(shù)的實(shí)際意義;
(Ⅱ)從“能接受的最高票價(jià)”落在[8,10),[10,12]的被調(diào)查者中各隨機(jī)選取3人進(jìn)行追蹤調(diào)查,記選中的6人中35歲以上(含35歲)的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
最高票價(jià) | 35歲以下人數(shù) |
[2,4) | 2 |
[4,6) | 8 |
[6,8) | 12 |
[8,10) | 5 |
[10,12] | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組中的函數(shù)f(x),g(x)表示同一函數(shù)的是( )
A.f(x)=x,g(x)=
B.f(x)=x+1,g(x)=
C.f(x)=|x|,g(x)=
D.f(x)=log22x , g(x)=2log2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com