如圖,A,F(xiàn)分別是雙曲線的左頂點、右焦點,過F的直線與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點.若AP⊥AQ,則C的離心率是(      )
A.B.C.D.
D

直線的方程:,令,得,故
聯(lián)立可以求得
所以,由,求得.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點,橢圓上總存在點P使得PF1⊥PF2,則橢圓的離心率的取值范圍為( 。
A.[
2
2
,1)
B.(
2
2
,1)
C.(0,
2
2
D.(0,
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是雙曲線 的右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點,雙曲線的離心率為e,下列命題正確的是(     ).
A.雙曲線的焦點到漸近線的距離為;
B.若,則e的最大值為;
C.△PF1F2的內(nèi)切圓的圓心的橫坐標(biāo)為b ;
D.若∠F1PF2的外角平分線交x軸與M, 則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線x2=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則·的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線中心在原點且一個焦點為F1(-,0),點P位于該雙曲線上,線段PF1的中點坐標(biāo)為(0,2),則雙曲線的方程是(  )
A.-y2=1B.x2=1
C.=1D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為雙曲線:的一個焦點,則點的一條漸近線的距離為(  )
A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線經(jīng)過點(2,2),且與具有相同漸近線,則的方程為         ;漸近線方程為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2013·陜西高考]雙曲線=1的離心率為,則m等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出以下四個命題:
①為了解600名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為30的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為30;
②二項式的展開式中含項的系數(shù)是;
③在某項測量中,測量結(jié)果服從正態(tài)分布N(2,)(>0).若在(,1)內(nèi)取值的概率為0.15,則在(2,3)內(nèi)取值的概率為0.7;
④若雙曲線的漸近線方程為,則k=1.其中正確命題的序號是            

查看答案和解析>>

同步練習(xí)冊答案