【題目】某校在2 015年11月份的高三期中考試后,隨機(jī)地抽取了50名學(xué)生的數(shù)學(xué)成績(jī)并進(jìn)行了分析,結(jié)果這50名同學(xué)的成績(jī)?nèi)拷橛?0分到140分之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組[80,90),第二組[90,100),…第六組[130,140],得到如圖所示的頻率分布直方圖.
(1)試估計(jì)該校數(shù)學(xué)的平均成績(jī)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(2)這50名學(xué)生中成績(jī)?cè)?20分以上的同學(xué)中任意抽取3人,該3人在130分(含130分)以上的人數(shù)記為X,求X的分布列和期望.
【答案】
(1)解:根據(jù)頻率分布直方圖,得:
成績(jī)?cè)赱120,130)的頻率為
1﹣(0.01×10+0.024×10+0.03×10+0.016×10+0.008×10)=1﹣0.88=0.12;
所以估計(jì)該校全體學(xué)生的數(shù)學(xué)平均成績(jī)?yōu)?/span>
85×0.1+95×0.24+105×0.3+115×0.16+125×0.12+135×0.08=8.5+22.8+31.5+18.4+15+10.8=107,
所以該校的數(shù)學(xué)平均成績(jī)?yōu)?07;
(2)解:根據(jù)頻率分布直方圖得,
這50人中成績(jī)?cè)?30分以上(包括130分)的有0.08×50=4人,
而在[120,140]的學(xué)生共有0.12×50+0.08×50=10,
所以X的可能取值為0、1、2、3,
所以P(X=0)= = = ,P(X=1)= = = ,
P(X=2)= = = ,P(X=3)= = = ;
所以X的分布列為:
X | 0 | 1 | 2 | 7 |
P |
數(shù)學(xué)期望值為EX=0× +1× +2× +3× =1.2.
【解析】(1)根據(jù)頻率分布直方圖,求出成績(jī)?cè)赱120,130)的頻率以及平均成績(jī);(2)根據(jù)題意,計(jì)算對(duì)應(yīng)的概率值,求出X的分布列與數(shù)學(xué)期望值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布直方圖和離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)可以得到問題的答案,需要掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息;在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)都為2,點(diǎn)P,Q分別為棱CC1 , BC的中點(diǎn),則四面體A1﹣B1PQ的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月10日, 我國(guó)科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎(jiǎng),以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國(guó)內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評(píng)定人工種植的青蒿的長(zhǎng)勢(shì)等級(jí):若,則長(zhǎng)勢(shì)為一級(jí);若,則長(zhǎng)勢(shì)為二級(jí);若,則長(zhǎng)勢(shì)為三級(jí);為了了解目前人工種植的青蒿的長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號(hào) | |||||
種植地編號(hào) | |||||
(1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;
(2)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的人工種植地中任取一地,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·重慶高二檢測(cè))如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn).
(1)證明:平面BDC1⊥平面BDC.
(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績(jī)不低于76的為優(yōu)良.
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績(jī)是“優(yōu)良”的概率;
(3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績(jī)“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),M為直線x=﹣3上任意一點(diǎn),過F作MF的垂線交橢圓C于點(diǎn)P,Q.證明:OM經(jīng)過線段PQ的中點(diǎn)N.(其中O為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司有6名產(chǎn)品推銷員,其工作年限與推銷金額數(shù)據(jù)如下表:
推銷員編號(hào) | 1 | 2 | 3 | 4 | 5 |
工作年限/年 | 3 | 5 | 6 | 7 | 9 |
推銷金額/萬元 | 2 | 3 | 3 | 4 | 5 |
(1)求年推銷金額關(guān)于工作年限的線性回歸方程;
(2)若第6名推銷員的工作年限為11年,試估計(jì)他的年推銷金額.
附:線性回歸方程中,,,其中為樣本平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com