(本小題滿分14分)已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、,
⑴求、的值;
⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.
(1),(2)
⑴依題意,……1分,不妨設(shè)、)…2分,
,……3分,所以……5分,
解得,……6分.                                                      
⑵由消去……7分,動圓與橢圓沒有公共點,當且僅當……9分,解得……10分。動圓與直線沒有公共點當且僅當,即……12分。解……13分,得的取值范圍為……14分.
……………………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)已知橢圓的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0),(c>0),過點E的直線與橢圓交于A、B兩點,且F1A//F2B,|F1A|=2|F2B|,
(1)求離心率;
2)求直線AB的斜率;
(3)設(shè)點C與點A關(guān)于標標原點對稱,直線F2B上有一點H(m,n)(m≠0)在△AF1C的外接圓上,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線與雙曲線有相同的焦點,點是兩曲線的一個交點,軸,若直線是雙曲線的一條漸近線,則直線的傾斜角所在的區(qū)間可能為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓的焦點是,,點在橢圓上且滿足.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)直線與橢圓的交點為,.
(i)求使 的面積為的點的個數(shù);
(ii)設(shè)為橢圓上任一點,為坐標原點,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為,則                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中心在原點,對稱軸為坐標軸的雙曲線C的兩條漸近線與圓都相切,則雙曲線C的離心率是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,通徑長為1,且焦點與短軸兩端點構(gòu)成等邊三角形,(1)求橢圓的方程;(2)過點Q(-1,0)的直線l交橢圓于A,B兩點,交直線x=-4于點E,點Q分 所成比為λ,點E分所成比為μ,求證λ+μ為定值,并計算出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

方程表示雙曲線,則的取值范圍是       (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


已知全集U={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},則Cu( MN)=(  )
A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}

查看答案和解析>>

同步練習冊答案