函數(shù)f(x)對(duì)任意x∈R都有f(x)+f(1-x)=
1
2
成立.
(Ⅰ)求和f(
1
n
)
+f(
n-1
n
)
(n∈N*)的值;
(Ⅱ)數(shù)列{an}滿足條件;an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,試證:數(shù)列{an}是等差數(shù)列.
分析:(Ⅰ)由f(x)對(duì)任意x∈R都有f(x)+f(1-x)=
1
2
成立可令x=
1
n
,則可求f(
1
n
)
+f(
n-1
n
)

(Ⅱ)由an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
可得an=f(1)+f(
n-1
n
)+f(
n-2
n
)+…+f(
1
n
)+f(0)
,利用倒序相加可求an,進(jìn)而可證數(shù)列{an} 是等差數(shù)列.
解答:解:(Ⅰ)∵f(x)對(duì)任意x∈R都有f(x)+f(1-x)=
1
2
成立
f(
1
2
)=
1
4
,令x=
1
n
,則有f(
1
n
)+f(1-
1
n
)=
1
2
,即f(
1
n
)+f(
n-1
n
)=
1
2

(Ⅱ)∵an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)

an=f(1)+f(
n-1
n
)+f(
n-2
n
)+…+f(
1
n
)+f(0)

兩式相加可得,2an=[f(0)+f(1)]+[f(
1
n
)+f(
n-1
n
)]+[f(
2
n
)+f(
n-2
n
)]+…
+[f(
n-1
n
)+f(
1
n
)]
+[f(1)+f(0)]=
n+1
2

所以數(shù)列{an} 是等差數(shù)列.
點(diǎn)評(píng):本題主要考查了利用賦值求抽象函數(shù)的函數(shù)值及利用倒序相加求解數(shù)列的和的方法的應(yīng)用,要注意該方法是推倒等差數(shù)列的求和公式的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對(duì)任意x,y∈R,都有f(x+y)=f(x)+f(y),當(dāng)x≠0時(shí),xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數(shù);
(2)試問:在-2≤x≤2時(shí),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式
1
2
f(bx)-f(x)>
1
2
f(b2x)-f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+a,x∈[1,+∞),且a<1
(1)判斷f(x)單調(diào)性并證明;
(2)若m滿足f(3m)>f(5-2m),試確定m的取值范圍.
(3)若函數(shù)g(x)=xf(x)對(duì)任意x∈[2,5]時(shí),g(x)+2x+
3
2
>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c
(1)若f(-1)=0,試判斷函數(shù)f(x)零點(diǎn)個(gè)數(shù);
(2)若對(duì)任意的x1,x2∈R,且x1<x2,f(x1)≠f(x2)(a>0),試證明:
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)成立.
(3)是否存在a,b,c∈R,使f(x)同時(shí)滿足以下條件:
①對(duì)任意x∈R,f(x-4)=f(2-x),且f(x)≥0;
②對(duì)任意的x∈R,都有0≤f(x)-x≤
1
2
(x-1)2
?若存在,求出a,b,c的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在(0,+∞)上的函數(shù)f(x)對(duì)任意x,y∈(0,+∞),都有f(x•y)=f(x)+f(y),且當(dāng)x>1時(shí)f(x)<0.
(Ⅰ)求f(1)的值;
(Ⅱ)判斷f(x)的單調(diào)性;
(Ⅲ)若f(2)=-1,解不等式f(x-2)+f(x)>-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)對(duì)任意x,y∈R,都有f(x+y)=f(x)+f(y),當(dāng)x≠0時(shí),xf(x)<0,f(1)=-2
(1)求證:f(x)是奇函數(shù);
(2)試問:在-n≤x≤n時(shí)(n∈N*),f(x)是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式
1
2
f(bx2)-f(x)≥
1
2
f(b2x)-f(b),(b>0)

查看答案和解析>>

同步練習(xí)冊(cè)答案