如圖,已知平面平面,且四邊形為矩形,四邊形為直角梯形,
,,,,.
(1)作出這個(gè)幾何體的三視圖(不要求寫作法).
(2)設(shè)是直線上的動(dòng)點(diǎn),判斷并證明直線與直線的位置關(guān)系.
(3) 求三棱錐的體積..
(1)見解答.   (2)垂直.   (3).

試題分析:(1)根據(jù)幾何體在三個(gè)方向的投影即可得其三視圖;(2)一般地判斷兩直線的位置關(guān)系,都應(yīng)該從平行與垂直兩個(gè)方向去考慮.在本題中,直線與直線明顯不平行,故朝垂直的方向考慮.連接,結(jié)合題設(shè)易得平面,從而得.(3)結(jié)合該幾何體的特征,可將面ADE補(bǔ)為一個(gè)矩形,這樣便可作出EF在面ADE內(nèi)的射影,從而求得EF與平面AED所成的角的余弦..
(1)該幾何體的三視圖如下圖所示:

(2)連接,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051832977750.png" style="vertical-align:middle;" />,所以平面,
所以.

(3)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051833070611.png" style="vertical-align:middle;" />,所以平面,
又平面平面,,從而,所以點(diǎn)G是CE的中點(diǎn).
由此可得,從而平面.
所以過E作.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐中,底面是邊長為的正方形,側(cè)棱底面,且的中點(diǎn).
(1)證明:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求證:平面PBC⊥面PDC
(2)設(shè)E為PC上一點(diǎn),若二面角B-EA-P的余弦值為-,求三棱錐E-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱柱中,底面ABCD和側(cè)面都是矩形,E是CD的中點(diǎn),,
.
(1)求證:;
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與分別相切于點(diǎn)、,與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.

(1)求該幾何體中間一個(gè)空心球的表面積的大小;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,ABCD是一平面圖形的水平放置的斜二側(cè)直觀圖.在斜二側(cè)直觀圖中,ABCD是一直角梯形,ABCD,AD⊥CD,且BC與y軸平行.若AB=6,AD=2,則這個(gè)平面圖形的實(shí)際面積為( 。
A.20
2
B.12
2
C.20D.
20
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將邊長為1的正方形以其一邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)一周,所得幾何體的側(cè)面積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐中,底面為邊長為的正三角形,頂點(diǎn)在底面上的射
影為的中心, 若的中點(diǎn),且直線與底面所成角的正切值為
,則三棱錐外接球的表面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD, .

(1)證明: A1BD // 平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

同步練習(xí)冊答案