已知是等比數(shù)列的前項和,、成等差數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說明理由.
(1);(2)存在符合條件的正整數(shù)的集合為.

試題分析:(1)設(shè)數(shù)列的公比為,依題意,列出關(guān)于首項與公比的方程組,解之即可求得數(shù)列的通項公式;(2)依題意,可得,對的奇偶性進(jìn)行分類討論,即可求得答案.
試題解析:(1)解:設(shè)數(shù)列的公比為,則,
由題意得解得
故數(shù)列的通項公式為                  6分
(2)由(1)有                                    7分
若存在,使得,則,即                      8分
當(dāng)為偶數(shù)時,,上式不成立                                            9分
當(dāng)為奇數(shù)時,,即,則                          11分
綜上,存在符合條件的正整數(shù)的集合為                    12分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)若對于任意不超過的正整數(shù)n,都有,證明:.
(Ⅲ)證明:)的充分必要條件為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為實數(shù),數(shù)列滿足,當(dāng)時,,
(Ⅰ);(5分)
(Ⅱ)證明:對于數(shù)列,一定存在,使;(5分)
(Ⅲ)令,當(dāng)時,求證:(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公比為2的等比數(shù)列的各項都是正數(shù),且=16,則=(   ).
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在上的函數(shù)滿足,且,若是正項等比數(shù)列,且,則等于      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則log2a10=(  )       
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等比數(shù)列{an}中,若a1,a4=-4,則|a1|+|a2|+…+|an|=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列的和為定值,且公比為,令,則的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

公比不為1的等比數(shù)列滿足,則       

查看答案和解析>>

同步練習(xí)冊答案