【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時(shí),求函數(shù)f(x)的最大值和最小值;
(2)記函數(shù)f(x)的最小值為g(a),求g(a)的表達(dá)式.
【答案】(1)最大值37,最小值1; (2)g(a)
【解析】
(1)根據(jù)對(duì)稱軸與定義區(qū)間位置關(guān)系確定最值取法,再代入求值;
(2)根據(jù)對(duì)稱軸與定義區(qū)間位置關(guān)系分類討論最小值取法,最后寫成分段函數(shù)形式.
(1)當(dāng)a=﹣1時(shí),f(x)=x2﹣2x+2=(x﹣1)2+1,
∴函數(shù)f(x)的最大值f(﹣5)=37,最小值f(1)=1;
(2)已知函數(shù)f(x)=x2+2ax+2=(x+a)2+2﹣a2
∴函數(shù)的圖象為開口方向向上的拋物線,對(duì)稱軸的方程為:x=﹣a
①當(dāng)﹣5≤a≤5時(shí):f(x)min=f(﹣a)=2﹣a2
②a<﹣5時(shí):f(x)min=f(5)=27+10a
③當(dāng)a>5時(shí):f(x)min=f(﹣5)=27﹣10a
綜上所述:g(a).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的增函數(shù),實(shí)數(shù)使得對(duì)于任意都成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于90為一等品,不小于80小于90為二等品,小于80為三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品虧損10元.現(xiàn)對(duì)學(xué)徒工甲和正式工人乙生產(chǎn)的產(chǎn)品各100件的檢測結(jié)果統(tǒng)計(jì)如下:
根據(jù)上表統(tǒng)計(jì)得到甲、乙生產(chǎn)產(chǎn)品等級(jí)的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品等級(jí)的概率.
(Ⅰ)求出甲生產(chǎn)三等品的概率;
(Ⅱ)求出乙生產(chǎn)一件產(chǎn)品,盈利不小于30元的概率;
(Ⅲ)若甲、乙一天生產(chǎn)產(chǎn)品分別為30件和40件,估計(jì)甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,其離心率,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若A,B,C,D是橢圓上不重合的四個(gè)點(diǎn),AC與BD相交于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是非零實(shí)常數(shù))滿足,且關(guān)于的方程的解集中恰有一個(gè)元素.
(1)求的值;
(2)在直角坐標(biāo)系中,求定點(diǎn)到函數(shù)圖像上任意一點(diǎn)的距離的最小值;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若存在極小值點(diǎn),且,其中,求證: ;
(Ⅲ)試問過點(diǎn)可作多少條直線與的圖像相切?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.
(1)求摸到的2只球顏色不同的概率:
(2)求摸到的2只球中至少有1只紅球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com