設(shè)數(shù)列{an}的首項a1=,前n項和為Sn,且滿足2an+1+Sn=3(n∈N*),則滿足<<的所有n的和為________.

 

7

【解析】由2an+1+Sn=3得2an+Sn-1=3(n≥2),兩式相減,得2an+1-2an+an=0,化簡得2an+1=an(n≥2),即 (n≥2),由已知求出a2=,易得,所以數(shù)列{an}是首項為a1=,公比為q=的等比數(shù)列,所以Sn==3[1-()n],S2n=3[1-()2n]代入<<,可得<()n<,解得n=3或4,所以所有n的和為7.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-5合情推理與演繹推理(解析版) 題型:選擇題

三段論推理“①矩形是平行四邊形;②三角形不是平行四邊形;③三角形不是矩形”中的小前提是(  )

A.① B.② C.③ D.①和②

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):6-1不等關(guān)系與不等式(解析版) 題型:填空題

已知實數(shù)a滿足ab2>a>ab,則實數(shù)b的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-5數(shù)列的綜合應(yīng)用(解析版) 題型:選擇題

已知等差數(shù)列{an}的前n項和為Sn,S4=40,Sn=210,Sn-4=130,則n=(  )

A.12 B.14 C.16 D.18

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:解答題

已知數(shù)列{an}的前n項和為Sn,a1=2.當(dāng)n≥2時,Sn-1+1,an,Sn+1成等差數(shù)列.

(1)求證:{Sn+1}是等比數(shù)列;

(2)求數(shù)列{nan}的前n項和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:選擇題

若數(shù)列{an}為等比數(shù)列,且a1=1,q=2,則Tn =+…+的結(jié)果可化為(  )

A.1- B.1-

C.(1-) D. (1-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項和(解析版) 題型:填空題

已知{an}是等比數(shù)列,a2=2,a5=,則Sn=a1+a2+…+an(n∈N*)的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項和(解析版) 題型:選擇題

在各項均不為零的等差數(shù)列{an}中,若-an+1=an-1(n≥2,n∈N*),則S2014的值為(  )

A.2013 B.2014 C.4026 D.4028

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:解答題

設(shè)向量a,b滿足|a|=|b|=1及|3a-2b|=

(1)求a,b夾角的大;

(2)求|3a+b|的值.

 

查看答案和解析>>

同步練習(xí)冊答案