已知圓心為C的圓經(jīng)過點 A(1,1)和B(2,-2),且圓心C在 直線L:x-y+1=0上,求圓C的標準方程.
考點:圓的標準方程
專題:計算題,直線與圓
分析:設圓心坐標為C(a,a+1),根據(jù)A、B兩點在圓上利用兩點的距離公式建立關于a的方程,解出a值.從而算出圓C的圓心和半徑,可得圓C的方程.
解答: 解:∵圓心在直線x-y+1=0上,
∴設圓心坐標為C(a,a+1),
根據(jù)點A(1,1)和B(2,-2)在圓上,可得
(a-1)2+(a+1-1)2
=
(a-2)2+(a+1+2)2
,
解之得a=-3
∴圓心坐標為C(-3,-2),半徑r=5
因此,此圓的標準方程是(x+3)2+(y+2)2=25.
點評:本題給出圓C滿足的條件,求圓的方程.著重考查了兩點間的距離公式和圓的標準方程等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)當
a
b
時,求cos2x-sin2x的值;
(2)設函數(shù)f(x)=2(
a
+
b
)•
b
,已知在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若a=
3
,b=2,sinB=
6
3
,求f(x)+4cos(2A+
π
6
) (x∈[0,
π
2
])的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x∈Z|-2≤x≤6},集合A={-1,0,1},B={x∈U|2x+3≤x2}.
求(Ⅰ)A∩B;
(Ⅱ)∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求函數(shù)f(x)=
1-log6x
的定義域;
(2)求函數(shù)y=
2x-1
x-1
的值域;
(3)化簡
416x8y4
(x<0,y<0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù)且對任意實數(shù)x恒有f(x+2)=-f(x),當x∈[0,2]時,f(x)=2x-x2
(1)當x∈[-2,0)時,求f(x)的解析式;
(2)計算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-2<x<3},B={x|
4
x+3
>1}.
(1)求集合A∩B;
(2)若不等式2ax2-2bx+3a2b<0的解集為B,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|-2≤x≤4},B={x|m-3≤x≤m}.
(1)若實數(shù)m=5,求A∩B;
(2)若A⊆(∁RB),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c.已知a+
2
c=2b,sinB=
2
sinC,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

A={(x,y)|(x-1)2+(y-2)2}≤
5
4
},B={(x,y)||x-1|+2|y-2|≤a},若A⊆B,則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案