【題目】設(shè){an}是首項(xiàng)為a,公差為d的等差數(shù)列(d≠0),Sn是其前n項(xiàng)和.記bn= ,n∈N* , 其中c為實(shí)數(shù).
(1)若c=0,且b1 , b2 , b4成等比數(shù)列,證明:Snk=n2Sk(k,n∈N*);
(2)若{bn}是等差數(shù)列,證明:c=0.

【答案】
(1)

證明:若c=0,則an=a1+(n﹣1)d, ,

當(dāng)b1,b2,b4成等比數(shù)列時(shí),則

即: ,得:d2=2ad,又d≠0,故d=2a.

因此:

故: (k,n∈N*).


(2)

證明:

=

= . ①

若{bn}是等差數(shù)列,則{bn}的通項(xiàng)公式是bn=An+B型.

觀察①式后一項(xiàng),分子冪低于分母冪,

故有: ,即 ,而 ,

故c=0.

經(jīng)檢驗(yàn),當(dāng)c=0時(shí){bn}是等差數(shù)列.


【解析】(1)寫出等差數(shù)列的通項(xiàng)公式,前n項(xiàng)和公式,由b1 , b2 , b4成等比數(shù)列得到首項(xiàng)和公差的關(guān)系,代入前n項(xiàng)和公式得到Sn , 在前n項(xiàng)和公式中取n=nk可證結(jié)論;
(2)把Sn代入 中整理得到bn= ,由等差數(shù)列的通項(xiàng)公式是an=An+B的形式,說(shuō)明 ,由此可得到c=0.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的前n項(xiàng)和公式和等比關(guān)系的確定的相關(guān)知識(shí)點(diǎn),需要掌握前n項(xiàng)和公式:;等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于為棱上的點(diǎn),,.

(1)若為棱的中點(diǎn),求證://平面;

(2)當(dāng)時(shí),求平面與平面所成的銳二面角的余弦值;

(3)在第(2)問(wèn)條件下,設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),與平面所成的角為,求當(dāng)取最大值時(shí)點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行中學(xué)生詩(shī)詞大賽,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()

A.640B.520C.280D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時(shí),f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線x軸交于不同的兩點(diǎn)A,B,曲線Γy軸交于點(diǎn)C

1)是否存在以AB為直徑的圓過(guò)點(diǎn)C?若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由;

2)求證:過(guò)A,B,C三點(diǎn)的圓過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求不等式的解集;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:

使用智能手機(jī)

不使用智能手機(jī)

總計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

4

8

12

學(xué)習(xí)成績(jī)不優(yōu)秀

16

2

18

總計(jì)

20

10

30

(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績(jī)有影響?

(Ⅱ)從學(xué)習(xí)成績(jī)優(yōu)秀的12名同學(xué)中,隨機(jī)抽取2名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.

參考公式:,其中

參考數(shù)據(jù):

0.05

0,。025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)設(shè)0x,求函數(shù)yx32x)的最大值;

2)解關(guān)于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示:

(Ⅰ)直方圖中x的值為
(Ⅱ)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為

查看答案和解析>>

同步練習(xí)冊(cè)答案