精英家教網 > 高中數學 > 題目詳情

已知A(4,-3),B(2,-1)和直線l:4x+3y-2=0,在坐標平面內求一點P,使|PA|=|PB|,且點P到直線l的距離為2.

答案:
解析:


提示:

分析:為使|PA|=|PB|,點P必定在線段AB的垂直平分線上,又點P到直線l的距離為2,利用點到直線的距離公式,可代入求得點P的坐標.

解題心得:在解析幾何中求滿足條件的點的坐標,往往根據所給條件列出方程組,通過方程組的解求得點的坐標,這是解析法的基本思想.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61
,
(1)求
a
b
的值;
(2)求
a
b
的夾角θ;
(3)求|
a
+
b
|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61.
(1)求
a
b
的夾角θ;
(2)若
c
=t
a
+(1-t)
b
,且
b
c
=0,求t及|
c
|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=4,|
b
|=3,且(2
a
-3
b
)•(2
a
+
b
)=61

(1)求
a
b
的夾角

(2)若
AB
=
a
,
AC
=
b
,求|
BC
|

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=4
,|
b
|=3
,(2
a
-3
b
)•(2
a
+
b
)=61
,則
a
b
的夾角θ為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知|
a
|=4,|
b
|=3.
(1)若
a
b
的夾角為60°,求(
a
+2
b
)  •(
a
-3
b
)
;
(2)若(2
a
-3
b
)  •(2
a
+
b
) =61
,求
a
b
的夾角.

查看答案和解析>>

同步練習冊答案