分析 (I)由題意可得:g(x)=ln$\frac{1}{x+1}$.F(x)=$\frac{ax}{x+1}$-ln$\frac{1}{x+1}$.(x>-1).F′(x)=$\frac{x+1+a}{(x+1)^{2}}$,對a分類討論即可得出單調(diào)性.
(II)?n∈N*,1n(n+1)+$\frac{1-n}{{n}^{2}}$>1nn恒成立?ln(1+x)>x-x2,x∈(0,1].令G(x)=ln(1+x)-x+x2,G(0)=0.利用研究其單調(diào)性即可證明.
解答 (I)解:函數(shù)g(x)的圖象是由y=1n$\frac{1}{x-2}$的圖象往左平移3個單位形成,∴g(x)=ln$\frac{1}{x+1}$.
F(x)=f(x)-g(x)=$\frac{ax}{x+1}$-ln$\frac{1}{x+1}$.(x>-1).
F′(x)=$\frac{a}{(x+1)^{2}}$+$\frac{1}{x+1}$=$\frac{x+1+a}{(x+1)^{2}}$,
①a≥0時,F(xiàn)′(x)>0,函數(shù)F(x)在(-1,+∞)上單調(diào)遞增;
②a<0時,-1<x<-a-1時,F(xiàn)′(x)<0,函數(shù)F(x)單調(diào)遞減;
x>-a-1,F(xiàn)′(x)>0,函數(shù)F(x)單調(diào)遞增.
綜上可得:①a≥0時,函數(shù)F(x)在(-1,+∞)上單調(diào)遞增;
②a<0時,-1<x<-a-1時,函數(shù)F(x)單調(diào)遞減;x>-a-1,函數(shù)F(x)單調(diào)遞增.
(II)證明:?n∈N*,1n(n+1)+$\frac{1-n}{{n}^{2}}$>1nn恒成立?ln(1+x)>x-x2,x∈(0,1].
令G(x)=ln(1+x)-x+x2,G(0)=0.
G′(x)=$\frac{1}{1+x}$-1+2x=$\frac{2{x}^{2}+x}{1+x}$>0,∴函數(shù)G(x)在x∈(0,1]上單調(diào)遞增,∴G(x)>G(0)=0.
因此ln(1+x)>x-x2恒成立,x∈(0,1].
∴:?n∈N*,1n(n+1)+$\frac{1-n}{{n}^{2}}$>1nn恒成立.
點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值、等價轉(zhuǎn)化方法、不等式的解法,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(文)試卷(解析版) 題型:選擇題
下圖是某幾何體的三視圖,則該幾何體的體積等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com