【題目】已知函數(shù)f(x)=sin(x﹣φ),且 f(x)dx=0,則函數(shù)f(x)的圖象的一條對稱軸是( )
A.x=
B.x=
C.x=
D.x=
【答案】A
【解析】解:∵函數(shù)f(x)=sin(x﹣φ),
f(x)dx=﹣cos(x﹣φ) =﹣cos( ﹣φ)﹣[﹣cos(﹣φ)]= cosφ﹣ sinφ= cos(φ+ )=0,
∴φ+ =kπ+ ,k∈z,即 φ=kπ+ ,k∈z,故可取φ= ,f(x)=sin(x﹣ ).
令x﹣ =kπ+ ,求得 x=kπ+ ,k∈Z,
則函數(shù)f(x)的圖象的一條對稱軸為 x= ,
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用定積分的概念和函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握定積分的值是一個常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限;圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣ ]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.
(1)大氣污染可引起心悸、呼吸困難等心肺疾病. 為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
問有多大的把握認(rèn)為是否患心肺疾病與性別有關(guān)?
(2)空氣質(zhì)量指數(shù)PM2.5(單位:μg/)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,就代表空氣污染越嚴(yán)重. 某市在2016年年初著手治理環(huán)境污染,改善空氣質(zhì)量,檢測到2016年1~5月的日平均PM2.5指數(shù)如下表:
月份x | 1 | 2 | 3 | 4 | 5 |
PM2.5指數(shù)y | 79 | 76 | 75 | 73 | 72 |
試根據(jù)上表數(shù)據(jù),求月份x與PM2.5指數(shù)y的線性回歸直線方程,并預(yù)測2016年8月份的日平均PM2.5指數(shù) (保留小數(shù)點(diǎn)后一位).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),分別為線段上的動點(diǎn),且滿足
(1)若求直線的方程;
(2)證明:的外接圓恒過定點(diǎn)(異于原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某零售店近5個月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;
(3)當(dāng)銷售額為4千萬元時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).
[參考公式:,]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是平行四邊形,,為的中點(diǎn),且有,現(xiàn)以為折痕,將折起,使得點(diǎn)到達(dá)點(diǎn)的位置,且
(1)證明:平面;
(2)若四棱錐的體積為,求四棱錐的側(cè)面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com