10.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m≤n,m,n∈N*,則m,n的值分別為( 。
A.m=13,n=20B.m=14,n=20C.m=20,n=20D.m=20,n=30

分析 根據(jù)1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,結(jié)合裂項(xiàng)相消法,可得$\frac{1}{m}$+$\frac{1}{n}$=$\frac{m+n}{mn}$=$\frac{33}{260}$,解得m,n值,可得答案.

解答 解:∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
∴1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$=(1-$\frac{1}{4}$)+$\frac{1}{m}$+$\frac{1}{n}$+($\frac{1}{5}$-$\frac{1}{12}$)+$\frac{1}{156}$,
∴$\frac{1}{m}$+$\frac{1}{n}$=$\frac{m+n}{mn}$=$\frac{33}{260}$
∴m=13,n=20,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是歸納推理,但本題運(yùn)算強(qiáng)度較大,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察等式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,…,由以上等式推測到一個(gè)一般的結(jié)論,對(duì)于n∈N*,13+23+33+…+n3=${[\frac{n(n+1)}{2}]^2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)f(x)是R上的連續(xù)可導(dǎo)函數(shù),當(dāng)x≠0時(shí),$f'(x)+\frac{f(x)}{x}>0$,則函數(shù)$g(x)=\frac{1}{x}+f(x)$的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(-x)=f(x),f(x)=f(2-x),當(dāng)x∈[0,1]時(shí),f(x)=x3,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間[-$\frac{1}{2}$,$\frac{3}{2}$]上的所有零點(diǎn)的和為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,三棱錐S-ABC中,SA⊥平面ABC,AB=6,BC=12,AC=6$\sqrt{5}$.SB=6$\sqrt{2}$,則三棱錐S-ABC外接球的表面積為216π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列推理是歸納推理的是( 。
A.由a1=1,an=3n-1,求出s1,s2,s3,猜出數(shù)列{an}的前n項(xiàng)和的表達(dá)式
B.由于f(x)=xsinx滿足f(-x)=-f(x)對(duì)?x∈R都成立,推斷f(x)=xsinx為偶函數(shù)
C.由圓x2+y2=1的面積S=πr2,推斷:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的面積S=πab
D.由平面三角形的性質(zhì)推測空間四面體的性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,第7幅圖的蜂巢總數(shù)為( 。
A.61B.90C.91D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若?x0∈R,使得f(x0)+f(x0+5)-m2<4m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|2x-1|.
(Ⅰ)求f(x)≤3x的解集;
(Ⅱ)求f(x)+|x+1|≤1的解集.

查看答案和解析>>

同步練習(xí)冊答案