(本小題共14分)
設函數(shù).
(Ⅰ)求函數(shù)的定義域及其導數(shù);
(Ⅱ)當時,求函數(shù)的單調區(qū)間;
(Ⅲ)當時,令,若在上的最大值為,求實數(shù)的值.
(1)(0,2),
(2)函數(shù)的單調遞增區(qū)間是
(3)
【解析】解:(Ⅰ)由得,即函數(shù)的定義域為(0,2); -----------------2分
. ---------------------4分
(Ⅱ)當時,
(1)當時,,所以在區(qū)間上,,
故函數(shù)的單調遞增區(qū)間是; ---------------------5分
(2)當時,令,解得,
①當時,即時,在區(qū)間上,,
故函數(shù)的單調遞增區(qū)間是; ---------------------7分
②當時,即時,在區(qū)間上,,
在區(qū)間上,,故函數(shù)的單調遞增區(qū)間是
,單調遞減區(qū)間是. ---------------------9分
(Ⅲ) 當且時,,
--------------------11分
即函數(shù)在區(qū)間上是增函數(shù),故函數(shù)在上的最大值為,
--------------------12分
所以,即. --------------------14分
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
數(shù)列的前n項和為,點在直線
上.
(I)求證:數(shù)列是等差數(shù)列;
(II)若數(shù)列滿足,求數(shù)列的前n項和
(III)設,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題共14分)
如圖,四棱錐的底面是正方形,,點E在棱PB上。
(Ⅰ)求證:平面;
(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009北京理)(本小題共14分)
已知雙曲線的離心率為,右準線方程為
(Ⅰ)求雙曲線的方程;
(Ⅱ)設直線是圓上動點處的切線,與雙曲線交
于不同的兩點,證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆度廣東省高二上學期11月月考理科數(shù)學試卷 題型:解答題
(本小題共14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD底面ABCD,PD=DC,點E是PC的中點,作EFPB交PB于點F
⑴求證:PA//平面EDB
⑵求證:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中數(shù)學 來源:2010年北京市崇文區(qū)高三下學期二模數(shù)學(文)試題 題型:解答題
(本小題共14分)
正方體的棱長為,是與的交點,為的中點.
(Ⅰ)求證:直線∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com