【題目】對于不等式,則對區(qū)間上的任意x都成立的實數(shù)t的取值范圍是_______

【答案】

【解析】

根據(jù)二次函數(shù)的單調性求出x2﹣3x+2在區(qū)間[0,2]上的最小值和最大值,把問題轉化關于t的不等式組得答案.

∵x2﹣3x+2=

x[0,2]時,,(x2﹣3x+2)max=2.

對于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對區(qū)間[0,2]上任意x都成立的實數(shù)t的取值范圍是[﹣1,1﹣].

故答案為:[﹣1,1﹣].

【點睛】

本題考查函數(shù)恒成立問題,考查了不等式的解法,體現(xiàn)了數(shù)學轉化思想方法,是基礎題.二次不等式分含參二次不等式和不含參二次不等式;對于含參的二次不等式問題,先判斷二次項系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進行分解,再比較兩根大小,結合圖像得到不等式的解集.

型】填空
束】
16

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項和,則的最小值為________

【答案】4

【解析】

成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡后,利用基本不等式求出式子的最小值.

成等比數(shù)列,a1=1,

=

∴(1+2d)2=1+12d,d≠0,

解得d=2.

∴an=1+2(n﹣1)=2n﹣1.

Sn=n+×2=n2

==n+1+﹣2≥2﹣2=4,

當且僅當n+1=時取等號,此時n=2,且取到最小值4,

故答案為:4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,該函數(shù)所表示的曲線上的一個最高點為,由此最高點到相鄰的最低點間曲線與軸交于點.

(1)函數(shù)解析式;

(2)求函數(shù)的單調區(qū)間;

(3)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若 =2,且b=2 ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的銳角三角形空地中, 欲建一個面積不小于300m2的內(nèi)接矩形花園(陰影部分), 則其邊長x(單位m)的取值范圍是 ( )

(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]

【答案】C

【解析】如圖ADE∽△ABC,設矩形的另一邊長為y,則,所以,又,所以,即,解得.

【考點定位】本題考查平面幾何知識和一元二次不等式的解法,對考生的閱讀理解能力、分析問題和解決問題的能力以及探究創(chuàng)新能力都有一定的要求.屬于難題.

型】單選題
束】
10

【題目】設等差數(shù)列{an}的前n項和為Sn,若Sm1=-2,Sm=0,Sm1=3,則m=(  )

A. 5 B. 4 C. 3 D. 6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a為負整數(shù))的圖像經(jīng)過點.

1)求的解析式;

2)設函數(shù),若上解集非空,求實數(shù)b的取值范圍;

3)證明:方程有且僅有一個解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調減區(qū)間;
(2)△ABC的內(nèi)角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且點M和N分別為B1C和D1D的中點.
(I)求證:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且 ,數(shù)列{bn}滿足 ,則數(shù)列{anbn}的前n項和Tn=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

同步練習冊答案