已知橢圓C的焦點F1(-,0)和F2,0),長軸長6,設(shè)直線交橢圓C于A  B兩點,求線段AB的中點坐標(biāo)

 

【答案】

解:由已知條件得橢圓的焦點在x軸上,其中c=,a=3,從而b=1,所以其標(biāo)準(zhǔn)方程是: .聯(lián)立方程組,消去y得, .

設(shè)A(),B(),AB線段的中點為M()那么: ,=所以=+2=.也就是說線段AB中點坐標(biāo)為(-,).

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F22
2
,0),長軸長6.
(1)設(shè)直線y=x+2交橢圓C于A、B兩點,求線段AB的中點坐標(biāo).
(2)求過點(0,2)的直線被橢圓C所截弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F22
2
,0),長軸長6,設(shè)直線l交橢圓C于A、B兩點,且線段AB的中點坐標(biāo)是P(-
9
5
1
5
),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F2(2
2
,0),長軸長為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線y=x+2交橢圓C于A、B兩點,求線段AB的中點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-2
2
,0)和F22
2
,0),長軸長6,設(shè)直線y=x+2交橢圓C于A、B兩點,求線段AB的中點坐標(biāo)
(-
9
5
,
1
5
(-
9
5
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的焦點F1(-,0)和F2,0),長軸長6,設(shè)直線交橢圓C于A、B兩點,求線段AB的中點坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊答案