已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

(1) , (2) 單調(diào)減區(qū)間是,單調(diào)增區(qū)間是

解析試題分析:(1) 先求導(dǎo),根據(jù)已知條件可得 且 ,解方程組可得 的值。(2)由(1)可知,先求導(dǎo)并將其同分整理,令導(dǎo)數(shù)大于0可得增區(qū)間,令導(dǎo)數(shù)小于0得減區(qū)間。
(1) .
處有極值.

解之得.
(2)由(1)可知,其定義域是,
.
,得;
,得.
所以函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是
考點(diǎn):用導(dǎo)數(shù)求函數(shù)的單調(diào)性及極值問題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)遞減區(qū)間;
(2)若在區(qū)間上的最大值為20,求它在該區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)
的切線斜率為-1.
(I)求的值及函數(shù)的極值;
(II)證明:當(dāng)時(shí),;
(III)證明:對任意給定的正數(shù),總存在,使得當(dāng),恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.若
(1)求的值;
(2)求的單調(diào)區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=ex-t(x+1).
(1)若f(x)≥0對一切正實(shí)數(shù)x恒成立,求t的取值范圍;
(2)設(shè),且A(x1,y1)、B(x2,y2)(x1≠x2)是曲線y=g(x)上任意兩點(diǎn),若對任意的t≤-1,直線AB的斜率恒大于常數(shù)m,求m的取值范圍;
(3)求證:(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1) 當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè),當(dāng)若對任意存在 使求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(是常數(shù))在處的切線方程為,且.
(1)求常數(shù)的值;
(2)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為小于的常數(shù)).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案