設(shè)數(shù)列滿(mǎn)足且數(shù)列是等差數(shù)列,數(shù)列是等比數(shù)列

(1)求數(shù)列的通項(xiàng)公式

(2)是否存在使若存在,求出若不存在,說(shuō)明理由

 

 

 

 

 

 

 

【答案】

 解:由題意得:

所以

         上式對(duì)也成立,所以

          所以

      

    當(dāng)時(shí),

    當(dāng)時(shí),

    故不存在正整數(shù)使

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
Sn
是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿(mǎn)足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意的等比中項(xiàng).
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)證明;
(Ⅲ)設(shè)集合,且,若存在,使對(duì)滿(mǎn)足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省威海市高三3月模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知正項(xiàng)數(shù)列,其前項(xiàng)和滿(mǎn)足的等比中項(xiàng)..

1求數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列的前99項(xiàng)和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省威海市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

(本小題滿(mǎn)分12分)設(shè)是單調(diào)遞增的等差數(shù)列,為其前n項(xiàng)和,且滿(mǎn)足的等比中項(xiàng).

(I)求數(shù)列的通項(xiàng)公式;

(II)是否存在,使?說(shuō)明理由;

(III)若數(shù)列滿(mǎn)足求數(shù)列的通項(xiàng)公式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿(mǎn)分12分)

設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)證明

(Ⅲ)設(shè)集合,,且,若存在,使對(duì)滿(mǎn)足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案
关 闭