已知函數(shù)f(x)=
3
2
sin2x+
1+cos2x
2
,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
考點(diǎn):三角函數(shù)的周期性及其求法,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)由兩角和的正弦公式化簡解析式可得f(x)=sin(2x+
π
6
+
1
2
,從而由正弦函數(shù)的性質(zhì)可求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)由于f(x)=sin(2x+
π
6
+
1
2
=sin[2(x+
π
12
)]+
1
2
,從而根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換即可得解.
解答: 解:(1)∵f(x)=
3
2
sin2x+
1+cos2x
2
=sin(2x+
π
6
+
1
2

∴T=
2

∴由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
可解得:kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,即單調(diào)增區(qū)間為:[kπ-
π
3
,kπ+
π
6
],k∈Z.
(2)∵f(x)=sin(2x+
π
6
+
1
2
=sin[2(x+
π
12
)]+
1
2

∴函數(shù)y=sin2x(x∈R)的圖象向左平移
π
12
個單位后,得到y(tǒng)=sin[2(x+
π
12
)]圖象,再向上平移
1
2
個單位即可得到f(x)=sin(2x+
π
6
+
1
2
的圖象.
點(diǎn)評:本題主要考查了三角函數(shù)的周期性及其求法,函數(shù)y=Asin(ωx+φ)的圖象變換,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,三棱柱ABC-A1B1C1中,AA1=2AB=2AC=2.∠A1AB=∠A1AC=∠BAC=60°,設(shè)
AB
=
a
,
AC
=
b
AA
=
c

(1)試用向量
a
,
b
c
表示
BC1
,并求|
BC1
|;
(2)在平行四邊形BB1C1C內(nèi)是否存在一點(diǎn)O,使得A1O⊥平面BB1C1C,若不存在,請說明理由;若存在,試確定O點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+bi(a∈R,b∈R)且a+b=1,則下列結(jié)論錯誤的是( 。
A、z可能為實(shí)數(shù)
B、z不可能為純虛數(shù)
C、若z的共軛復(fù)數(shù)為z,則z•
.
z
=a2+b2
D、|z|的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足不等式組
x-y≤2
x+y≤4
x≤2
,則z=2x+y的最大值是( 。
A、4B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式1+2x+4xa>0在x∈(-∞,-1]時總成立,求實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),若對給定的△ABC,它的三邊的長a,b,c均在函數(shù)f(x)的定義域內(nèi),且f(a),f(b),f(c)也為某三角形的三邊的長,則稱f(x)是“保三角形函數(shù)”,給出下列命題:
①函數(shù)f(x)=x2+1是“保三角形函數(shù)”;
②函數(shù)f(x)=
x
(x>0)是“保三角形函數(shù)”;
③若函數(shù)f(x)=kx是“保三角形函數(shù)”,則實(shí)數(shù)k的取值范圍是(0,+∞);
④若函數(shù)f(x)是定義在R上的周期函數(shù),值域?yàn)椋?,+∞),則f(x)是“保三角形函數(shù)”;
⑤若函數(shù)f(x)=
e2x+t•ex+1
e2x+ex+1
是“保三角形函數(shù)”,則實(shí)數(shù)t的取值范是[-
1
2
,4].
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=C
 
1
n
a1+C
 
2
n
a2+…+C
 
n
n
an,n∈N*
(1)若Sn=n•2n-1(n∈N),是否存在等差數(shù)列{an}對一切自然數(shù)n滿足上述等式?
(2)若數(shù)列{an}是公比為q(q≠±1),首項(xiàng)為1的等比數(shù)列,數(shù)列{bn}滿足b1+b2+…+bn=
Sn
2n
(n∈N*),求證:{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差d=1,前n項(xiàng)和為Sn
(1)若a1,a3,8成等比數(shù)列,求a1
(2)若a1S6<a13,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的函數(shù)y=(k-2)x+1是R上的增函數(shù),則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案