已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:



4

1

2
4

2
(1)求的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線AC、BD過原點O,若,
(i) 求的最值.
(ii) 求四邊形ABCD的面積;

(1)
(2)

解析試題分析:解析:
(2)設(shè)直線AB的方程為,設(shè)
聯(lián)立,得
  ----------①
                  
   

=      
                              
 

當k=0(此時滿足①式),即直線AB平行于x軸時,的最小值為-2.
又直線AB的斜率不存在時,所以的最大值為2.              11分
(ii)設(shè)原點到直線AB的距離為d,則

.           13分
考點:直線與橢圓,拋物線
點評:主要是考查直線與橢圓以及拋物線的位置關(guān)系的運用,屬于中檔題。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.已知曲線的極坐標方程為,直線的參數(shù)方程為為參數(shù),).
(Ⅰ)化曲線的極坐標方程為直角坐標方程;
(Ⅱ)若直線經(jīng)過點,求直線被曲線截得的線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
(1)求拋物線和橢圓的標準方程;
(2)過點的直線交拋物線兩不同點,交軸于點,已知,求的值;
(3)直線交橢圓兩不同點,軸的射影分別為,若點滿足,證明:點在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定點,,動點到定點距離與到定點的距離的比值是.
(Ⅰ)求動點的軌跡方程,并說明方程表示的曲線;
(Ⅱ)當時,記動點的軌跡為曲線.
①若是圓上任意一點,過作曲線的切線,切點是,求的取值范圍;
②已知是曲線上不同的兩點,對于定點,有.試問無論,兩點的位置怎樣,直線能恒和一個定圓相切嗎?若能,求出這個定圓的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過點作直線與雙曲線相交于兩點、,且為線段的中點,求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側(cè)的點(點軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;
(2)設(shè)直線的斜率分別為,若,設(shè)△與△的面積分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為F2,點F1與F2關(guān)于坐標原點對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點P、Q且.
(1)求點T的橫坐標;
(2)若以F1,F2為焦點的橢圓C過點.
①求橢圓C的標準方程;
②過點F2作直線l與橢圓C交于A,B兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)橢圓的焦點在軸上
(Ⅰ)若橢圓的焦距為1,求橢圓的方程;
(Ⅱ)設(shè)分別是橢圓的左、右焦點,為橢圓上第一象限內(nèi)的點,直線軸與點,并且,證明:當變化時,點在某定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線:上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.
(Ⅲ)試把問題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請寫出結(jié)論,不用證明.

查看答案和解析>>

同步練習冊答案