分析 由題意可得 圓心的直角坐標(biāo)為(1,$\sqrt{3}$),半徑為2,故圓的直角坐標(biāo)方程為(x-1)2+(y-$\sqrt{3}$)2=4,即 x2+y2=2x+2$\sqrt{3}$y.再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式可得它的極坐標(biāo)方程.
解答 解:由題意可得 圓心的直角坐標(biāo)為(1,$\sqrt{3}$),半徑為2,故圓的直角坐標(biāo)方程為(x-1)2+(y-$\sqrt{3}$)2=4,
即 x2+y2=2x+2$\sqrt{3}$y.
再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式可得 ρ2=2ρcosθ+2$\sqrt{3}$ρsinθ,即 ρ=2cosθ+2$\sqrt{3}$sinθ,
故答案為:ρ=2cosθ+2$\sqrt{3}$sinθ.
點(diǎn)評(píng) 本題主要考查極坐標(biāo)與直角坐標(biāo)的互化,簡(jiǎn)單曲線的極坐標(biāo)方程,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1)∪(1,3] | B. | (0,1)∪(1,3) | C. | (0,1)∪(2,+∞) | D. | (0,1)∪(1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com