【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( 。
A. 若該大學(xué)某女生身高為170cm,則可斷定其體重必為
B. 回歸直線過樣本點的中心
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加
D. y與x具有正的線性相關(guān)關(guān)系
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在標(biāo)有“甲”的袋中有個紅球和個白球,這些球除顏色外完全相同.
(Ⅰ)若從袋中依次取出個球,求在第一次取到紅球的條件下,后兩次均取到白球的概率;
(Ⅱ)現(xiàn)從甲袋中取出個紅球, 個白球,裝入標(biāo)有“乙”的空袋.若從甲袋中任取球,乙袋中任取球,記取出的紅球的個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電力公司在工程招標(biāo)中是根據(jù)技術(shù)、商務(wù)、報價三項評分標(biāo)準(zhǔn)進行綜合評分的,按照綜合得分的高低進行綜合排序,綜合排序高者中標(biāo)。分值權(quán)重表如下:
總分 | 技術(shù) | 商務(wù) | 報價 |
100% | 50% | 10% | 40% |
技術(shù)標(biāo)、商務(wù)標(biāo)基本都是由公司的技術(shù)、資質(zhì)、資信等實力來決定的。報價表則相對靈活,報價標(biāo)的評分方法是:基準(zhǔn)價的基準(zhǔn)分是68分,若報價每高于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上扣0.8分,最低得分48分;若報價每低于基準(zhǔn)價1%,則在基準(zhǔn)分的基礎(chǔ)上加0.8分,最高得分為80分。若報價低于基準(zhǔn)價15%以上(不含15%)每再低1%,在80分在基礎(chǔ)上扣0.8分。在某次招標(biāo)中,若基準(zhǔn)價為1000(萬元)。甲、乙兩公司綜合得分如下表:
公司 | 技術(shù) | 商務(wù) | 報價 |
甲 | 80分 | 90分 | 分 |
乙 | 70分 | 100分 | 分 |
甲公司報價為1100(萬元),乙公司的報價為800(萬元)則甲,乙公司的綜合得分,分別是
A. 73,75.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,三點中恰有二點在橢圓上,且離心率為。
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點, 為橢圓的左右頂點, 為中點,求證:直線與直線它們的斜率之積為定值;
(3)若橢圓的右焦點為,過的直線與橢圓交于,求證:直線與直線斜率之和為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C是圓O上一點,AC=BC,且PA⊥平面ABC,E是AC的中點,F是PB的中點,PA=,AB=2.求:
(Ⅰ)異面直線EF與BC所成的角;
(Ⅱ)點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)部門隨機抽測生產(chǎn)某種零件的工人的日加工零件數(shù)(單位:件),其中A車間13人,B車間12人,獲得數(shù)據(jù)如下:
根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
[25,30] | 3 | 0.12 |
(30,35] | 5 | 0.20 |
(35,40] | 8 | 0.32 |
(40,45] | n1 | f1 |
(45,50] | n2 | f2 |
(1)確定樣本頻率分布表中n1、n2、f1和f2的值;
(2)現(xiàn)從日加工零件數(shù)落在(40,45]的工人中隨機選取兩個人,求這兩個人中至少有一個來自B車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得至少有一個,使成立,若存在,求出實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0,1,2,3,4這五個數(shù)字組成無重復(fù)數(shù)字的自然數(shù).
(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個數(shù);
(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個位上的數(shù)字都小,則稱這個數(shù)為“凹數(shù)”,如301,423等都是“凹數(shù)”,試求“凹數(shù)”的個數(shù);
(Ⅲ)在組成的五位數(shù)中,求恰有一個偶數(shù)數(shù)字夾在兩個奇數(shù)數(shù)字之間的自然數(shù)的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組測量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α,∠ADE=β
(1)該小組已經(jīng)測得一組α、β的值,tanα=1.24,tanβ=1.20,,請據(jù)此算出H的值
(2)該小組分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使α與β之差較大,可以提高測量精確度,若電視塔實際高度為125m,問d為多少時,α-β最大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com