【題目】在直角坐標(biāo)系xOy中,設(shè)動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離與到定直線l:x=﹣1的距離相等,記P的軌跡為Γ.又直線AB的一個(gè)方向向量 且過點(diǎn)(1,0),AB與Γ交于A、B兩點(diǎn),求|AB|的長.

【答案】解:∵動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離與到定直線l:x=﹣1的距離相等,
∴由拋物線的定義,可得動(dòng)點(diǎn)P的軌跡Γ是拋物線,
設(shè)其方程為y2=2px,由 =1得2p=4,
∴拋物線的方程為y2=4x,即為曲線Γ的方程.
∵直線AB的一個(gè)方向向量 ,過點(diǎn)(1,0),
∴直線AB的斜率k=2,方程為y=2(x﹣1),即y=2x﹣2.
設(shè)直線l與曲線Γ的交點(diǎn)坐標(biāo)為A(x1 , y1)、B(x2 , y2),
,整理得x2﹣3x+1=0,可得x1+x2=3.
∴根據(jù)拋物線的定義,可得|AB|=x1+x2+p=2+x1+x2=5.
【解析】根據(jù)拋物線的定義得動(dòng)點(diǎn)P的軌跡Γ是拋物線,求出其方程為y2=4x.由直線方程的點(diǎn)斜式,算出直線AB的方程為y=2x﹣2,再將直線方程與拋物線方程聯(lián)解,并結(jié)合拋物線的定義加以計(jì)算,可得線段AB的長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(用空間向量坐標(biāo)表示解答)如圖,在直三棱柱ABC﹣A1B1C1中,AC=BC=CC1=2,AC⊥BC,D為AB的中點(diǎn).

(1)求證:AC1∥面B1CD
(2)求直線AA1與面B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)的農(nóng)產(chǎn)品A第x天(1≤x≤20,x∈N*)的銷售價(jià)格p=50﹣|x﹣6|(元∕百斤),一農(nóng)戶在第x天(1≤x≤20,x∈N*)農(nóng)產(chǎn)品A的銷售量q=a+|x﹣8|(百斤)(a為常數(shù)),且該農(nóng)戶在第7天銷售農(nóng)產(chǎn)品A的銷售收入為2009元.
(1)求該農(nóng)戶在第10天銷售農(nóng)產(chǎn)品A的銷售收入是多少?
(2)這20天中該農(nóng)戶在哪一天的銷售收入最大?為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對(duì)于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實(shí)數(shù)k的取值范圍,使得集合B中元素個(gè)數(shù)最少,并用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD﹣A1B1C1D1為正方體,① ;② ;③向量 與向量 的夾角是60°;④正方體ABCD﹣A1B1C1D1的體積為 .其中正確的命題是(寫出所有正確命題編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域?yàn)镸,過圓弧上中點(diǎn)A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域?yàn)镹.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點(diǎn)B,若設(shè)點(diǎn)B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在 (﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f( ),c=f(0.20.6),則a,b,c大小關(guān)系是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=kax﹣ax(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若a>1,試判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(3)若已知f(1)= ,且函數(shù)g(x)=a2x+a2x﹣2mf(x)在區(qū)間[1,+∞)上的最小值為﹣2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域是(
A.[4,+∞)
B.(﹣∞,4]
C.(3,+∞)
D.(3,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案