如下圖,矩形ABCD是機(jī)器人踢球的場(chǎng)地,AB=170cm,AD=80cm,機(jī)器人先從AD中點(diǎn)E進(jìn)入場(chǎng)地到點(diǎn)F處,EF=40cm,EF⊥AD。場(chǎng)地內(nèi)有一小球從點(diǎn)B向點(diǎn)A運(yùn)動(dòng),機(jī)器人從點(diǎn)F出發(fā)去截小球。現(xiàn)機(jī)器人和小球同時(shí)出發(fā),它們均作勻速直線運(yùn)動(dòng),并且小球運(yùn)動(dòng)的速度是機(jī)器人行走速度的2倍。若忽略機(jī)器人原地旋轉(zhuǎn)所需的時(shí)間,則機(jī)器人最快可在何處截住小球?
解:設(shè)該機(jī)器人最快可在點(diǎn)G處截住小球,點(diǎn)G在線段AB上.連接FG
設(shè)FG=xcm,根據(jù)題意,得BG=2xcm
則AG=AB-BG=(170-2x)cm
連接AF,在△AEF中,EF=AE=40cm,EF⊥AD,
所以∠EAF=45°,AF=40cm
于是∠FAG=45°,
在△AFG中,由余弦定理,得
FG2=AF2+AG2-2AF·AGcos∠FAG
所以x2=(402+(170-2x)2-2×40×(170-2x)×cos45°
解得x1=50,x2=
所以AG=170-2x=70cm或AG=-cm(不合題意,舍去)
答:該機(jī)器人最快可在線段AB上離A點(diǎn)70cm處截住小球。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

    如下圖,矩形ABCDADQP所在平面垂直,將矩形ADQP沿PD對(duì)折,使得翻折后點(diǎn)Q落在BC上,設(shè)AB=1,PA=h,AD=y.

    (1)試求y關(guān)于h的函數(shù)解析式;

    (2)當(dāng)y取最小值時(shí),指出點(diǎn)Q的位置,并求出此時(shí)AD與平面PDQ所成的角;

    (3)在條件(2)下,求三棱錐PADQ內(nèi)切球的半徑.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

    如下圖,矩形ABCDADQP所在平面垂直,將矩形ADQP沿PD對(duì)折,使得翻折后點(diǎn)Q落在BC上,設(shè)AB=1,PA=h,AD=y.

    (1)試求y關(guān)于h的函數(shù)解析式;

    (2)當(dāng)y取最小值時(shí),指出點(diǎn)Q的位置,并求出此時(shí)AD與平面PDQ所成的角;

    (3)在條件(2)下,求三棱錐PADQ內(nèi)切球的半徑.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高二下期末考試文科數(shù)學(xué)卷(解析版) 題型:選擇題

如下圖,矩形ABCD中,點(diǎn)E為邊CD上任意一點(diǎn),若在矩形ABCD內(nèi)部隨機(jī)取一個(gè)點(diǎn)Q,則點(diǎn)Q取自△ABE內(nèi)部的概率等于(      )

A.              B.               C.               D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,矩形ABCD|AB|=1,|BC|=aPA⊥平面ABCD,|PA|=1。

(1)BC邊上是否存在點(diǎn)Q,使得PQQD,并說(shuō)明理由;

(2)若BC邊上存在唯一的點(diǎn)Q使得PQQD,指出點(diǎn)Q的位置,并求出此時(shí)AD與平面

PDQ所成的角的正弦值;

(3)在(2)的條件下,求二面角Q―PD―A的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案